小学四年级数学教案下册优质4篇
【请您参阅】下面供您参考的“小学四年级数学教案下册优质4篇”是由阿拉网友精心整理分享的,供您阅读参考之用,希望此例范文对您有所帮助,喜欢就复制下载支持一下小编了!
小学四年级数学教案下册【第一篇】
两位数乘一位数(积在100以内)和几百几十的数的口算
1、使学生在理解的基础上,掌握整数乘法的口算方法。
2、培养学生类推迁移的能力和口算的能力,
3、使学生经历整数乘法口算方法的形成过程,体验解决问题策略的多样性。
4、培养学生养成认真口算的良好学习习惯。
5、使学生感受到数学源于生活,培养学生积极思考的习惯
掌握整数乘法的口算方法。
培养学生养成认真思考的良好学习习惯。
图片、题卡。
1、你们想知道一些交通工具的运行速度吗?(出示六种交通工具的时速的图片)
2、你还知道其他交通工具的速度吗?
出示例1
人骑自行车1小时约行16千米。
特快列车1小时约行160千米。
1)人骑自行车3小时可以行多少千米?
提问:计算这道题时怎样想?怎样列式?如何计算?
小组交流讨论。小组汇报
问:30小时行多少千米?
练一练: 184= 243= 252= 146=
2)特快列车3小时可以行多少千米?怎么列式
提问:计算这道题时怎样想?在小组内交流一下。 组织学生汇报交流。
比较两种方法,你认为哪种方法简便?
练习:1305= 2380= 1506= 713= 4602=
口算乘法的方法是什么?
师生归纳总结口算方法;一位数与几百几十相乘,先乘0前面的数,再在乘积的后面添上一个0。
板书课题:口算乘法
1、练习六第1题。将得数写在树叶旁边。
2、练习六第1题和第2题。应用乘法口算解决实际问题。
3、练习六第4题和第5题 口算练习(略)
今天你学会了什么?
第48页6——9。
小学四年级数学教案下册【第二篇】
人教版四年级上册第五单元56页-57页。
1、认识垂线和平行线
2、使学生掌握“相互平行”与“相互垂直”的含义。
3、培养和发展学生的空间想象能力。
掌握垂直和平行的概念
理解平行线定义中“在同一个平面内的”的含义。
一、情境导入,整理明标
1、复习导入:
师:我们在第三单元学习了线段、直线和射线,现在请你在你的本子上画出一条直线,再回忆一下直线有哪些特征?
预设:(1)直的(2)向两边无线延伸(3)无法测量(2)没有端点
师:在你刚才所画的直线旁边随意再画一条直线,会发生什么情况?
预设:
预设:通过回忆直线的特征,构建两条直线的位置关系,引入本节课的知识点——平行与垂直。
2、整理明标
(1)认识平行
(2)认识垂直
二、明确路径,合作探究
问题一:采用小组合作探究两条直线的位置关系,进而发现什么是平行。
问题二:通过学生观察,教师讲授,得出两条直线相互垂直的概念。
三、展示反馈,对抗质疑
问题一:认识平行
(1)提出问题:观察一下每组中的两条直线,它们的位置有什么不同?你能按位置将他们分分类吗?先独立思考然后小组讨论一下你是怎么分的?
(2)操作:按照相交和不相交的标准将它们分类。
(3)汇报:
(1) ①②,③④
(2)①,②③④
(4)出示定义:我们将同一个平面内不相交的两条直线下了一个定义:在同一个平面内不相交的两条直线叫做平行线,也可以说这两条直线互相平行。
(5)提出问题:你从刚才读的这句话里找到那些重要的信息?
(6)汇报:①同一个平面内②不相交
(7)对抗:为什么要强调一定要在同意平面内?不在同一平面内行不行?
(8)演示:出示画着两条平行的直线的白纸,然后将纸沿着两条直线中间剪开,成两个平面展示。
(9)提出问题:如何表示两条直线互相平行?(a∥b);生活中有平行线吗?
(10)小结:很多地方都可以看到有平行线的存在,在同一个平面内不相交的两条直线叫做平行线。
问题二:认识垂直
(1)操作:跟着老师一起来量一量两条直线相交所成的角是多少度
(2)汇报:成90度和不成90度
(3)出示定义:我们将两条直线相交成90度的情况下了一个定义:两条直线相交成直角,就说这两条直线相互垂直,其中一条直线叫做另一条直线的垂线,这两条直线的交点叫做垂足。
(4)对抗:你从刚才所读的这句话中得到哪些重要的信息?
(5)汇报:①相交②成直角
(6)提出问题:我们如何表示他们呢?(a⊥b);生活中有垂直的例子吗?
(7)小结:生活中有很多垂直的例子,两条直线相交成直角,就说这两条直线相互垂直。
四、检测总结,拓展延伸
1、练习
(1)教材第57页做一做:独立完成
2、全课总结:今天这节课你有什么收获?
3、课后拓展:
(1)判断
①、不相交的两条直线叫做平行线。
②、在同一平面内,两条直线不平行就一定垂直。?
③、过直线外一点能画无数条直线的平行线。
(2)下面的图形有平行和垂直的情况吗?
出示“双杠”图让学生找出平行与垂直。
小学四年级数学教案下册【第三篇】
1.教学中课本上的结论是否就是定论?
2.课堂上采用小组讨论形式,万一发言一发不可收,提出令人尴尬的问题或课堂教学秩序混乱,教学任务完不成怎么办?
3.课堂上小组讨论是否会流于形式,反而浪费了课堂时间?
最近,我教《约数和倍数》这一章,感到非常头疼。因为我教书8年来,一直认为这章概念多,难理解,要想学生学好,必须讲得细,扎扎实实练好每一节。所以,我认真备课,把要学的每一个知识点都准备讲得清清楚楚。但事与愿违,上课时,许多学生觉得挺简单,我在讲解时,他们不停地插话,打断我的思路;可让他们做作业时,却错误百出,真是“自以为是”!但是不让他们插话,认真听我讲,结果他们兴趣索然,趴在桌上不想听课!我真是不知该怎么办,甚至埋怨这班学生不如其他班的,真是“朽木不可雕也!”。
后来,我停止了抱怨,开始反思:如何能让学生积极、主动地参与呢?嗯……对!要转变学生的学习方式,使他们成为学习的主人。
一、复习。
1.什么叫公约数?什么叫最大公约数?
2.自己默默地想一想如何求两个数的最大公约数。
二、教学新课。
(黑板上出示)求下面每组数的最大公约数,如能简便,请用简便方法计算;如不行,就用短除法来求。
11和12 8和15 12和18 21和7
学生们认真地观察这些数字,进行着思考和计算。一会儿,有的学生喜形于色,有的学生紧锁眉头,此时的教室里鸦雀无声,每个学生都在积极地思索(进入了状态),5分钟过去了,一个学生轻轻问:“段老师,讲讲吧?”我歉然一笑,说:“老师现在不会告诉你的。”接着又向大家说:“现在分小组讨论,交流各自的意见。”
一句话击起了“千层浪”,学生们展开了热烈的讨论,有些学生认为4个题都可简便,有些学生认为有三个可简便,有些学生还认为简便的方法不只一种。这时,我出示了一张表:
根据工作表,小组长带领组员思考要探究的问题,大胆地提出自己的猜想,并尝试着进行实践证明……在一番自主活动之后,师与生、生与生之间充分展示自己的思考方法和探究过程——
生:我认为第一组“11和12”可以简便计算,它们相差是1,最大公约数就是1。
生:(对刚才那个学生反问)我认为你的想法是错误的,11和12互质,所以它们的最大公约数是1。
生:(支持第一个学生)我举了好几个例子,比如7和8相差1,最大公约数就是1。
生:我认为只要是两个互质数,它们的公约数就只有1,因此,最大公约数也是1,例如:第一组中的“11和12”,第二组中的“8和15”;而其中11和12的最大公约数是1,也正好相差是1,这是一个巧合,也是正确的,但它不能代表所有互质数的求法,只能代表相邻的两个数的求法,又因为相邻的两个数一定互质,我们为何不把它归为一类:两个互质数,最大公约数就是1。
同学们听后纷纷投去赞许的目光。
师:同学们,道理只有越辩越明,经过刚才的讨论,我们得出一个结论:如果两个数是互质数,它们的最大公约数就是1。(投影出示)
生:我们组认为第三组“12和18”求最大公约数也可用简便方法,可以用公约数6去除,再看所得的商还有没有其他公有质因数,结果没有了公有质因数,因此,12和18的最大公约数是6。
生:(反对刚才那个同学所说的)我们在用短除法求最大公约数时,只能用质因数去除,怎么能用公约数去除呢?
生:是啊!只能用公有质因数去除,6是一个合数,不能用6去除。(一片议论声。)
师(引导):大家想一想最大公约数是求什么?
生:是求两个数公有的约数中最大的一个。
师:既然这个最大公约数既是18的约数,又是12的约数,因此,就可以用18和12的公约数去除,大家之所以习惯用公有质因数去除,是因为短除法当时从分解质因数演变过来的,但从最大公约数的意义考虑,是可以用它们的公约数去除的。
学生听得非常认真,并且有恍然大悟的神情。
生:我发现第四组“21和7”也有简便方法,它们的最大公约数是7,7的约数有7,21的约数也有7,所以,它们的最大公约数是较小数7。
生:我对刚才那位同学进行补充,因为21是7的倍数,所以,21的约数必定有7,7又是它本身的约数,因此,它们的最大公约数是7。
师:同学们刚才说得非常好,这就是第二个规律(投影出示):如果较小数是较大数的约数,那么较小数就是这两个数的最大公约数。
经过刚才的发言,举手的人渐渐少了,可有一位同学仍坚持不懈地高高举着手,我便请他发言。
生:我认为除了老师您黑板上的例子可以简便,还有一种可以简便处理的方法,那就是:两个相邻的奇数一定互质,它们的最大公约数也是1,虽然它包含在互质数这一类中,但仍比较特殊。
他的回答着实让我和同学们吃了一惊,当时,我也对他的答案是否正确把握不准。于是便领着学生们进行验证,发现果然是正确的,同学们都露出了佩服的神情。
接下来,同学们又认真地看书中例题,并且积极地做了相关的练习题。
上面这个案例,是我在教学中的一个片段,它体现了我思想上的一些创新和转变。
1.由指令性活动向自主性探索转化。
在前段时间教学时,总是对学生不放心,结果只会束缚学生的手脚,阻碍学生思维的发展,因为真正能培养学生创新精神和实践能力的实践活动必须是学生自主的活动。这一节课中,学生自己在进行观察、假设、探究等高层次的思维活动之后,得出的结论是我始料不及的。
2.由问答式教学向学生独立思考基础上的合作学习转变。
在教学中,学生一直处于发现问题、解决问题的状态之中,用自己的思维方式进行探究,形成独特见解,此时的合作有了基础。当有了不同意见时,才会产生创新的思想火花;当意见相同时,就会充分展示自己的思想和表现欲,那小组合作怎会流于形式呢?可能这会“浪费”些时间,但这让我们的学生获得了多少知识和能力啊!
3.课本不能被当作惟一不可改变的标准。
课本在学生学习时起到了至关重要的作用,但学生可在此基础上进行探索和创新。例如在这节课上,学生们总结出来的规律可能被分别归入书中几类,但他们所发现的细微的结构特征是书上所没有的,它是那样有新意,我们有什么理由可以“一刀切”呢?
学生的学习方式的转变关键在于教师,一方面要求教师不断更新教学观念,树立先进的教学理念;另一方面要求教师能将先进的教学理念转化为教学行为,特别是要改变长期形成的、习惯了的旧的教学方式。只有让学生充分从事探究学习活动,发挥他们的自主性、主动性、选择性和创造性,才能真正地使他们成为学习的主人!
小学四年级数学教案下册【第四篇】
p116页的练习二十五的第20题。
知识与技能:通过复习“鸡兔同笼”问题,感受中国古代数学问题的趣味性。
过程与方法:能熟练用列表、假设等不同的方法解决“鸡兔同笼”问题,体验解决问题的方法的多样性,提高解决实际问题的能力。
情感态度价值观:通过复习,培养学生的合作意识和逻辑推理能力,在解决问题的过程中,提高迁移思维的能力,进而体会数学的价值。
教学重点:熟练理解和掌握解决问题的不同思路和方法,让学生再一次亲历列表法、假设法等解题的过程,深刻体会解决问题的一般性策略。
教学难点:建构解决“鸡兔同笼”问题的数学模型,运用学到的解题策略熟练解决生活中的实际问题。教具学具:多媒体
一、情境导入
师:“鸡兔同笼”是一道有名的中国古算题。最早出现在《孙子算经》中。许多小数数学问题都可以转化成这类问题。
师:你知道解决“鸡兔同笼”问题有几种方法吗?通过比较发现它们有什么特点?
生1:列表法,适合数据较小的问题。
生2:假设法,一般情况都适合,数量关系比较容易理解。
师:今天我们复习“鸡兔同笼”问题。
二、自主探究
师:摆三角形和正方形一共用了19根小棒。(任意两个图形之间没有公共边)你能算出分别摆了多少个三角形和多少个正方形吗?(学生回答)
师:星期日,小英一家八口人到博物馆参观,博物馆的票价是成人每人30元,儿童每人15元,买门票共花去210元钱,其中儿童有几人?(学生回答)
师:三年级(4)班48人去北海公园划船,租了大船和小船共10条,每6人克坐满一条大船,每4人可坐满一条小船,且每条船都没有空位,他们租大船和小船各几条?(学生回答)
三、探究结果汇报
师:通过复习“鸡兔同笼”问题,你有哪些收获?
生1:借助列表的方法,解决简单的实际问题。
生2:我学会了化繁为简的学习方法。
生3:用“假设”法解决问题的一般性。
四、师生总结收获
师:通过本课的学习,你有哪些收获?
师生总结得出:解决数学问题时,可以先提出假设,如果假设后的情况与实际不符,这时就需要进行调整。我们可以借助画图、列表等方法帮助我们进行调整,从而推算出正确结果,最后还要对结果进行检验。(逐一板书:假设、调整、检验)
板书设计
鸡兔同笼假设→调整(列表、画图)→检验