实用数学的小论文汇聚(汇总4篇)

网友 分享 时间:

数学的小论文【第一篇】

在数学教学过程中,教师们若想合理的实施这种教学模式,首先就应该全面的认识到小组合作学习的重要性。很多人都明白,在数学教学过程中,并不是所有的学生都能够全身心的投入到老师们所传授知识的过程,有很大一部分学生或因为学习单调或因为方式的不对,无法真正的学习到知识。教师们的任务无非是传授知识,但是如果有些学生们无法有很好的接受性,那么教师们就要改变战略。让学生由被动接受改为主动探索,激起学生们对于数学知识学习的渴望。让学生们在自由的环境中能够更大发挥自己的能力,进而提高教师们的教学水平与质量。

在数学教学小组合作学习模式当中,如果想要得到极大的成效,就应该对自身角色有明确的认识。也就是说,教师们只是在这其中充当绿叶,而同学才是这里的主角。其中,教师要用合理的方式对学生们的自身情况进行分组学习,让学生们有足够的大量时间进行数学学习中的探索,研究,分析,结果,并把自身的心得与大家分享,必要时还可以集体讨论。让学生们充分的参与其中,体会学习数学的乐趣。应该重点说的是,教师们要根据自身的教学内容情况,合理并恰当的选择学生们的学习时间和学习方法。教师们应提前做好判断,不可因为时间分配的不合理或方法不当而让学生没有很好的参与,那就得不偿失了。另外,教师们还应该在同学的结论中给予评价并提出不足,使学生认识到正确性以及错误性。并把犯下的错误加以修改。如此而来,这就会使学生形成长期有效的数学学习方式,提高数学学习成果。

学生们在课堂上能够表现良好,自主与他人交流、沟通,这是跟老师们的辛苦教育、激励式的教育方式有着不可分割的关系的。鼓励会使学生对教师产生信赖感,使其乐于参与小组合作学习之中。并且学生们可以有更广阔的的空间来进行交流,不但提高了学生的积极性,也是学习效率稳步上升。所以,在小组合作学习数学教学中,教师们应该合理并且有计划的组织学生们进行讨论研究数学,让学生们的思维在这个过程中得到激烈的碰撞和摩擦。换句话说,就是要为学生们创造一个广阔的思维舞台,使学生们在辩论讨论的过程中,打破传统的观念,开发创造性。所以,在数学教学方面,教师们要根据实际情况切实的按照所要传授的教学内容,掌握好其中的契机,并且在这个过程中要有一定的带动性,以便于小组合作学习数学的学生更积极的参加其中。例如,在这个过程中,设置一些疑点、难点,让学生们进行讨论研究探索,各个同学之间会取长补短,相互借鉴,相互鼓励,进而形成一股良好的思想交流风气。其中,教师和学生的交流更是尤为突出主要的。这也是教师个人教育方式的良好体现。

据了解,众多的发明创造很少有一个人独自完成,很多都是集体合作得来的所以,在小组合作学习中,集体的力量便充分展现出来。以个人、小组、班级多种组合方式,会把每个人的特长发挥出来,许多人的思维力量拧成一股绳,便是强大而不可忽视的,极大的展现了每个人的学习优势。小组合作学习的分组,要慎重考虑。例如学习好的,不见得团结性就好,所以,教师们要以学生自身的特点为他们分配合理的组合,是每个学生都能够得到极大的锻炼,改正自己的不足,让学习数学成为一种乐趣,还要成为一种知识信仰。使每一个学生都可以充分的参与其中,达到不掉队不落后的效果。然后,通过研究探索,在自身的小组中可以讨论并得出大家都公认的结果,与其他的小组进行对比。这样的合作方式,让学生们之间更加的信任。可以使对数学没有兴趣学习不太好的学生重新燃起对于数学的渴望,使中等学生得到更多的锻炼和提高,使学习良好的学生能够对知识了解的更加透彻。最重要的是,所有的学生,不分好坏不分性别,都可以在此过程中得到一种快乐的心情,让学生们明白学习数学其实是一件很让人心情愉快的事情。

以小组合作的方式学习数学是一种非常乐观的学习模式,不仅可以提高学生们的知识掌握性,还能够让学生们更加良好的运用,而且让同学之间达到一种相互信赖相互依靠的和谐关系。培养学生们的竞争性,合作性,和与人讨论的意识。对于学生们的心理素质的养成,有着至关重要的地位。从而达到提高学习效率,主动学习发展数学的最终要求。

数学的小论文【第二篇】

首先要明确的是,由于《离散数学》是一门数学课,且是由几个数学分支综合在一起的,内容繁多,非常抽象,因此即使是数学系的学生学起来都会倍感困难,对计算科学专业的学生来说就更是如此。大家普遍反映这是大学四年最难学的一门课之一。

作为一门理论抽象,内容广泛,结构严谨的计算机专业基础可它不仅与计算机专业基础课(数据结构,操作系统。数据库原理。人工智能,编译原理,网络理论等)有紧密联系,而且对培养学生的抽象思维能力与逻辑推理能力有着重要作用,为我们今后在是计算机科学的研究与技术的卡法提供了重要的工具。

鉴于《离散数学》在计算科学中的重要性,这是一门必须牢牢掌握的课程。既然如此,在学习《离散数学》时,大家最应该注意学习过程是一个扎扎实实积累的过程,不能打马虎眼。离散数学是理论性较强的学科,学习离散数学的关键是对离散数学集合论、数理逻辑和图论有关基本概念的准确掌握,对基本原理及基本运算的运用,并要多做练习。

1、知识点集中,概念和定理多:《离散数学》是建立在大量概念之上的逻辑推理学科,概念的理解是我们学习这门学科的核心。不管哪本离散数学教材,都会在每一章节列出若干定义和定理,接着就是这些定义定理的直接应用。掌握、理解和运用这些概念和定理是学好这门课的关键。要特别注意概念之间的联系,而描述这些联系的则是定理和性质。

《离散数学》课程的教学内容一般包括四个部分:数理逻辑、集合论、代数。

系统、图论。这四部分内容中每一个部分都可以是一门独立的课程,它们分别作为《离散数学》课程的一部分,容易造成教学内容繁多与教学课时数偏少相矛盾,使教学过程具有很大的难度。如果这几部分的内容都要详细讲授,时间上来不及。所以在在教学过程中对讲授内容的设置上应当有所侧重,比如学生对集合论基础的很多内容在中学数学中已经有所了解,所以这部分内容只需要简要介绍一下,重点放在用集台论的方法解决实际应用问题上。对于二元关系这部分,侧重点是加强对与二元关系的几个性质相关问题的论证方法的训练。在数理逻辑上通过将一般命题公式和一阶逻辑公式化成范式,达到强化训练学生逻辑演算能力,并通过逻辑推理理论的学习来提高逻辑推理能力。图论部分重点放在基本概念的理解和实际问题的处理上,通过对相关定理及其证明思路的理解来体会图论的研究方法。代数系统这部分内容重点放在群论上,尤其要在代数系统、群、子群、循环群、变换群、正规子群的概念及相关问题的理解上下功夫,特别要掌握同构和同态的概念及应用,对于其它的代数系统如环、域及布尔代数则可以略讲。另外,现行大多数教材,主要是集中在从纯数学理论角度教授基本内容,这也是不利于学生的理解学习的。如果选择了这种教材,在教学过程中,应穿插介绍一些知识点在计算机科学中的应用,将之与离散数学理论结合介绍给学生,使学生重视这一课程的学习,产生学习兴趣,主动地进行学习。这将有利于学生理解理论知识,又为后续课程的学习奠定基础。

在学习《离散数学》的过程,对概念的理解是学习的重中之重。一般来说,由于这些概念(定义)非常抽象(学习《线性代数》时会有这样的经历),往往不能在脑海中建立起它们与现实世界中客观事物的联系。这是《离散数学》学习过程中要面临的第一个困难,觉得不容易进入学习的状态。因此一开始必须准确、全面、完整地记住并理解所有的定义和定理。具体做法是在进行完一章的学习后,用专门的时间对该章包括的定义与定理实施强记。只有这样才可能本课程的抽象能够适应,并为后续学习打下良好的基础。

因此,只要肯下功夫,人人都能有扎实的基础,拥有足够的数学知识,特别是能大大提高本身的逻辑推理能力、抽象思维能力和形式化思维能力,从而今后在学习任何一门计算机科学的专业主干课程时,都不会遇上任何思维理解上的困难。

前面一堆废话,以下才是学生要说的:

让我们不至于觉得枯燥,但却过多没有联系我们的专业讲解实例,无法引起我们足够的重视,其实这也是大部分课程的问题。

注重归纳总结,掌握规律、使学生能够理清头绪,提高学习效率。这方面我觉得老师就有做到,虽然这点时间不长,每节课将上节课内容回复、总结。每章也有做总结,可能有些章不是很重要还是怎么老师没有总结,其他都很好。

注重类比教学,离散数学中一些概念很容易混淆,个人比较喜欢总结一些东西的共同和不同,虽然有时是两个不相干的概念从而导致自己陷入牛角尖。但从中确实收获不少。在教学过程中,如能充分比较的方法,讲清它们的共同点和不同点,能让我们加深对概念的理解,从而避免判断的错误。

还有啊,感觉学校的网络教学虽然有建设可实在无法理解,好多东西都没有,就光有个名字,什么时候离散也能走上网络教学的殿堂呢。起码网络课件可以先建下。

最后衷心感谢老师费心的教导我们,从您身上学到很多,教学方法独特,思想也很开化,是个比较容易沟通的老师。有时也很雷人的讲些不雅却受学生辈的俗语,让人忍不住夸你可爱啊。

数学的小论文【第三篇】

1、从教育教学实践经验和困惑中发现写作的主题。在教育教学实践活动中,有一系列难点、疑点、焦点问题,认真思考这些问题的症结在哪里,解决这些问题的关键因素有哪些,采取什么样的策略可能会有效,从而发掘出一些具有实用价值的写作主题。例如,怎样提高计算教学的实效性;提高学生口算能力的策略,在解决问题教学中如何克服思维定势的影响等。也可以捕捉教育教学实践中的共性问题,作为写作的主题。例如,目前课堂教学中普遍存在的“费时低效”的症结在哪里,如何把一些先进的教学思想、教学观念转化为可操作的教学行为等。

2、从教育教学改革的热点中提炼写作主题。例如,新课程下教育教学方式、学习方式的探究:如何有效利用多媒体提高数学教学质量,在数学教学中如何发展学生的个性,如何优化课堂教学结构(自主式教学结构、交流式教学结构、练习式教学结构、自学辅导式教学结构),如何评价接受性学习,如何有效落实情感、态度、价值观教育等。

3、大量浏览文献资料,捕捉写作主题。这种方法就是通过对占有的文献资料快速地、大量地阅读,在比较中确定主题。

二、收集和积累资料。

做好论文写作所需资料的收集工作,是提高论文质量的基础。所积累的资料必须是有根据的,而不是主观臆断的。必须是通过自己亲身实践研究出的,或是他人研究总结的真实成果。收集资料的方法有以下几种。

1、阅读有关的理论书籍。认真学习教育教学理论和科研方法,掌握教育教学理论的一些基本概念,积累丰富的理论知识,提高理论水平。

2、调查研究,广泛收集、整理资料。在浏览文献中要勤做笔记,随时记下资料的纲目,记下资料中自己感受最深刻的观点、论据、论证方法等,特别是要写下在阅读过程中自己的点滴体会。

三、精心构思写作过程。

明确了主题,经过一段时间的实践和思考,积累了丰富的资料,就应思考如何写作,我写教育教学论文大致按下面步骤进行。

1、确定题目。论文的题目是论文的眼睛,也是论文总体内容的体现。一个好的题目应醒目新颖,能给读者留下深刻的印象。我拟定题目常用的方法是:用简明凝练的文字点明文章主题。例如,在数学教学中渗透数学思想方法是新课程提出的要求,而数形结合思想又是数学思想方法的重要内容之一,涉及《数学课程标准(实验稿)》而提出的“数学思考”、“解决问题”等目标领域。在教学实践中,我对应用数形结合思想教学“解决问题”产生了一些新的体会,于是以《数形结合思想在“解决问题”教学中的应用》为题写了1篇教学文章,发表在《云南教育》2010年第12期。这个题目一看就明白虽然“解决问题”涉及的知识和策略是多方面的,但这里只谈如何应用数形结合思想来解决问题。可见,论题新颖和开口小是拟定题目的两大要素。注意用简练的文字,点明主题。

2、构思写作提纲。确定了写作的主题后,就要思考怎样撰写整篇文章,这就是论文的构思与布局。

(1)明确文章的中心论点和分论点。文章的中心论点也叫总论点,它是文章阐述的中心观点,文章里的全部材料都是为它服务的。要把中心论点阐述得具体、切实,需要将其分解成若干个分论点。分解中心论点的依据一定要明确、统一,前后一致。分解出的分论点既要有紧密的内在联系,又要有外在的序列形式。每个分论点都是中心论点的构成部分,几个分论点的综合就是中心论点。然后,根据分论点的序列展开论述。如,我写的《数形结合思想在“解决问题”教学中的应用》这一大标题已点明了文章的题目(中心论点)。引言部分对“数形结合思想”进行了简明、准确的诠释,指明文章是结合教学实例谈“数形结合思想”在“解决问题”教学中的应用。正文中的三个分论点依次是:数形结合,帮助学生理解题意;数形结合,引导学生探索解题途径;数形结合,提高学生思维层次。根据“解决问题”这一具体知识领域的特点,首先是全面读题、审题,理解题目的已知条件和所求问题,其次是进一步分析已知条件和所求问题之间的数量关系,寻找解决问题的途径,明确思路,确定解法,最后达到提高学生的思维能力和解决问题的能力的教学目标。这样把分论点采用递进的方式进行论证,各分论点鲜明、突出,使读者一目了然。

(2)论证要具有严密的逻辑性。论证是运用论据来证明论点的方法和过程,是把论点和论据联系起来的纽带。因此,论证必须使论点和论据成为一个有机的整体。常用的逻辑论证方法有归纳法、演绎法、类比法,这些方法在1篇文章中常常交织运用。在论证的过程中要注意:第一,不要以偏概全,要分析事物与事物之间的关系,再得出结论。第二,不能省略必要的推理过程,要一环扣一环地阐述,也要注意详略得当。第三,不要循环论证。

写出提纲以后,再审视、复检,力求逻辑严密,结构和谐。材料的主次安排要得当,重要的部分占的篇幅大些,次要的内容占的篇幅小些。

四、仔细斟酌,反复修改。

论文的初稿写出来以后,可以从以下几个方面去修改。

1、重审论点,看文章中的论点是否表述得准确、清楚。写出来的和设想的是否相符,文章中的每一个分论点是否从不同的角度论证了中心论点。

2、核实论据是否充分、贴切。对所使用的每一个论据加以核实,看观点与材料是否吻合,论据有没有代表性和典型意义,用得是否恰当、准确、有力。文章的质量不在于材料的数量,关键是材料本身的性质、特点和对论点的直接论证效果。因此,修改时应将可有可无的材料删掉。

3、斟酌布局,修改论文的结构。文章写出初稿之后,要根据中心论点对文章的结构进行合理的调整。对于诸如顺序颠倒、详略不当、前后重复、层次不清、缺乏条理性等,都要进行具体的修改。

4、推敲语句是否通顺、规范、精练。论点、材料、布局等方面的内容,归根到底都要落实到文字表述上。读者总是借助语言来评判、接受作者的观点。为了使语言不嗦、不凌乱,修改时要一字一词地推敲,运用准确的词句来表述内容,使文句通顺、流畅、准确。

数学的小论文【第四篇】

《数学课程标准》提出:“要让小学生在参与特定的数学活动,在具体情境中初步认识对象的特征,获得一些体验。”所谓体验,就是个体主动亲历或虚拟地亲历某件事并获得相应的认知和情感的直接经验的活动。让小学生亲历经验,不但有助于通过多种活动探究和获取数学知识,更重要的是小学生在体验中能够逐步掌握数学学习的一般规律和方法。教师要以“课标”精神为指导,用活用好教材,进行创造性地教,让小学生经历学习过程,充分体验数学学习,感受成功的喜悦,增强信心,从而达到学会学习的目的。

一、自主探究——让小学生体验“再创造”。

荷兰数学家弗赖登塔尔说过:“学习数学的唯一正确方法是实行再创造,也就是由小学生把本人要学习的东西自己去发现或创造出来;教师的任务是引导和帮助小学生去进行这种再创造工作,而不是把现成的知识灌输给小学生。”实践证明,学习者不实行“再创造”,他对学习的内容就难以真正理解,更谈不上灵活运用了。如学完了“圆的面积”,出示:一个圆,从圆心沿半径切割后,拼成了近似长方形,已知长方形的周长比圆的周长大6厘米,求圆的面积(下图)。乍一看,似乎无从下手,但经过自主探究便能想到:长方形的周长不就比圆周长多出两条宽,也就是两条半径,一条半径的长度是3厘米,问题迎刃而解。

教师作为数学教学内容的加工者,应站在发展小学生思维的高度,相信小学生的认知潜能,对于难度不大的例题,大胆舍弃过多、过细的铺垫,尽量对小学生少一些暗示、干预,正如“数学教学不需要精雕细刻,小学生不需要精心打造”,要让小学生像科学家一样去自己研究、发现,在自主探究中体验,在体验中主动建构知识。

二、实践操作——让小学生体验“做数学”。

教与学都要以“做”为中心。陶行知先生早就提出“数学教学做合一”的观点,在美国也流行“木匠数学教学法”,让小学生找找、量量、拼拼……因为“你做了你才能学会”。皮亚杰指出:“传统数学教学的特点,就在于往往是口头讲解,而不是从实际操作开始数学教学。”“做”就是让小学生动手操作,在操作中体验数学。通过实践活动,可以使小学生获得大量的感性知识,同时有助于提高小学生的学习兴趣,激发求知欲。

在学习“时分秒的认识”之前,让小学生先自制一个钟面模型供上课用,远比带上现成的钟好,因为小学生在制作钟面的过程中,通过自己思考或询问家长,已经认真地自学了一次,课堂效果能不好吗?如:一张长30厘米,宽20厘米的长方形纸,在它的四个角上各剪去一个边长5厘米的小正方形后,围成的长方体的体积、表面积各是多少?小学生直接解答有困难,若让小学生亲自动手做一做,在实践操作的过程中体验长方形纸是怎样围成长方体纸盒的,相信大部分小学生都能轻松解决问题。

对于动作思维占优势的小小学生来说,听过了,可能就忘记;看过了,可能会明白;只有做过了,才会真正理解。教师要善于用实践的眼光处理教材,力求把数学教学内容设计成物质化活动,让小学生体验“做数学”的快乐。

三、合作交流——让小学生体验“说数学”。

这里的“说数学”指数学交流。课堂上师生互动、生生互动的合作交流,能够构建平等自由的对话平台,使小学生处于积极、活跃、自由的状态,能出现始料未及的体验和思维火花的碰撞,使不同的小学生得到不同的发展。因为“个人创造的数学必须取决于数学共同体的‘裁决’,只有为数学共同体所一致接受的数学概念、方法、问题等,才能真正成为数学的成分。”因此,个体的经验需要与同伴和教师交流,才能顺利地共同建构。

四、联系生活——让小学生体验“用数学”。

《数学课程标准》指出:“数学教学要体现生活性。人人学有价值的数学。”教师要创设条件,重视从小学生的生活经验和已有知识出发,学习和理解数学;要善于引导小学生把课堂中所学的数学知识和方法应用于生活实际,既可加深对知识的理解,又能让小学生切实体验到生活中处处有数学,体验到数学的价值。

体验学习需要引导小学生主动参与学习的全过程,在体验中思考,锻炼思维,在思考中创造,培养、发展创新思维和实践能力。当然,创设一个愉悦的学习氛围相当重要,可以减少小学生对数学的畏惧感和枯燥感。让小学生亲身体验,课堂上思路畅通,热情高涨,充满生机和活力;让小学生体验成功,会激起强烈的求知欲望。同时,教师应该深入到小学生的心里去,和他们一起历经知识获取的过程,历经企盼、等待、焦虑、兴奋等心理体验,与小学生共同分享获得知识的快乐,与孩子们共同“体验学习”。

48 1435810
");