初一数学论文例文【精选4篇】

网友 分享 时间:

【导言】此例“初一数学论文例文【精选4篇】”的范文资料由阿拉题库网友为您分享整理,以供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载支持吧!

初一数学论文_【第一篇】

《新课程标准》指出:“有效的学习活动不能单纯地依赖模仿与记忆,动手实践、自主探究与合作交流是学生学习的重要方式。”新的教学观所关注的不仅是活动的结果,更关注的是学科学习活动的过程。作为教师,应努力为学生提供充分的学习活动机会,让学生在自主探究、合作交流的过程中理解和掌握基本的知识与技能,形成有效的学习策略。因此,课堂教学就是让学生亲身经历知识的形成与应用的过程。通过动手实践,合作交流,总结规律,解决问题。这样,不但能培养学生的探索及创新能力,更重要的是能让学生学会与别人合作的方法和能力。

几年来,在《新课程标准》精神的影响下,本人在初中数学课堂教学中探究实践了“合作教学”模式,本文就此谈谈自己的一些做法和体会。

一、合作教学的特征

合作教学是将全班学生分成若干小组,在教师恰当的组织和有效的调控下,在课堂教学过程中,以“个人自学”、“小组合作”、“班级合作”为基本教学形式,通过师生之间、学生之间多边互动,积极合作完成教学任务的一种教学模式。

1、合作教学体现学生的主体地位

合作教学是师生之间相互作用,积极合作完成教学任务的教学。在教学活动中,学生是学习的“主体”“主角”,教师起“主导”“导演”作用。老师的主要任务是为学生设计学习情景,激发学生学习兴趣,调动学生学习积极性,让学生参与教学活动全过程,自主探索学习,获取知识,提高发现问题、提出问题、分析问题和解决问题的能力。从而使学生学会学习,真正成为学习的主人。

2、合作教学有利于学生认知的发展

在合作教学活动中,教师引导学生合作沿着前人研究、探索数学问题的路子去思维、动脑、动口、动手,亲自体验知识的发生和形成过程,这样不仅掌握了知识,而且学会怎样学习。这种方法的学习远远比被动地接受老师讲解要深刻得多,而且对学生认知能力的发展会产生深远的影响。

3、合作教学有利于教学信息的及时反馈

在合作教学中,师生之间的信息传递和交流形成了双向反馈的模式。教师能从合作过程中充分了解不同层次学生的学习信息,及时调整教学策略,针对认知过程中出现的问题,给予点

拨、引导,使学生顺利地合作学习,达到预定的教学目标。

二、合作教学的实施策略

1、营造课堂上良好的合作气氛

在合作教学活动中,教师与学生之间是平等的,不是服从与被服从的关系。教育家陶行知先生曾明确指出:“创造力最能发挥的条件是民主。当然不民主的环境下,创造力也有表现,那仅是限于少数,而且不能充分发挥其天才,但如果要大量开发人矿中之创造力,只有民主才能办到,只有民主的目的、民主的方法才能完成这样的大事。”教师应发扬教学民主,在分析问题、讨论问题中积极鼓励学生大胆质疑,提看法,使学生在合作学习中有“解放感”、“轻松感”。这样才能有利于学生在课堂上形成大胆提出问题,畅所欲言,集思广益,逐步形成宽松民主的课堂气氛,为学生之间、师生之间成功合作学习,创设良好的教学环境。 在合作教学中,教师对教材处理和教学设计是否符合学生实际的接受能力和理解能力,也影响课堂合作的气氛和效果。如设计学习问题坡度太陡,知识过于复杂、难度高,学生接受不了,无法合作学习。因此,教师对教材的处理和教学问题的设计应难度适中,既要突出重点,又要分散难点。使学生在每一课的学习中,有一定知识坡度和难度,让学生“跳一跳能摘到果子”。如在“一次函数的图象和性质”新授课的练习中,提出问题“已知函数y=kx的图象经过第二、四象限,那么函数y=-kx+k的图象不经过 象限。”这对刚学习一次函数的图象和性质的学生,要解答这道题,确实难度较大,学生无从下手,我把这个题目改为“已知函数y=kx的图象经过第二、四象限,那么:

(1)k 0(填“>”“=”“<”);

(2)函数y=-kx的图象经过 象限;

(3)函数y=-kx+k的图象经过 象限。

这时,学生“动”了起来,没有“旁观者”、“怠情生”,在教师的引导启发下,合作分析、讨论,图形结合,解答出来。难题被突破了,合作的成功体验使他们学有兴趣、轻松愉快,这样,便营造出良好的合作气氛。

2、合作教学课堂活动的操作

合作教学课堂活动操作的主要环节是:引、读、议、练、结。

(1)引:教师围绕教学内容,认真研究每节课的引入,创设情境。采用问题提出、设问引思、复旧引新等手法,为新课的导入铺路搭桥。“引”的目的是使学生明确目标,激发学习兴趣和求知欲望。

(2)读:教师给出阅读提纲,为学生自学定标定向,让学生根据提纲阅读教材或有针

对性、有选择性地阅读教材的重点、难点,或者由教师引导学生发现新知识后,再由学生阅读教材,从而使学生对本节课的新知识有初步的认识。在阅读时,要求学生对于书中概念、定理、公式、法则、性质等,一定要边看边思,反复推敲,顺着导读提纲的思路,弄清知识的提出、发展和形成过程,弄清知识的来龙去脉。对自学中碰到的疑难问题,小组同学可以小声议论,互相启发,取长补短。教师必须来回巡视,指导学生阅读,了解阅读效果,掌握学生自学中存在的疑难问题和不足之处。

(3)议:对各小组自学存在困惑不解的问题以及新知识中的重点、难点、疑点,教师不要急于作讲解、回答,要针对疑惑的实质给以必要的“点拨”,让学生调整自己的认识思路,让全班学生合作议论,各抒己见,集思广益,互相探究,取长补短,通过再思、再议达到“通”的境地,解惑释疑。对积极发言的学生予以表扬,对有独到见解的给予肯定、鼓励。这样,即调动学生参与教学的积极性,促进学生的创造性思维能力的发展,又培养了学生表达问题、展开交流的能力和合作精神。

例如:教学三角形中位线这一课,我提出三个问题给予导读导议:〈1〉什么是三角形的中位线?一个三角形中位线有多少条?它与三角形中线有何区别?〈2〉何谓三角形中位线定理?它的条件和结论各是什么?〈3〉如何证明三角形中位线定理?根据反馈,学生都能轻松地理解掌握前两个问题,但对课本中这个定理的证明的思路和方法感到陌生,存在疑惑。我不急于向学生讲解,而是由学生在全班上提出问题,针对要害给予点拨,让全班学生再思再议,发挥集体智慧,合作分析解决问题。有甲学生提出:“这一定理的证明思路和方法,又新又陌生,是怎样想出来的?”又有乙学生提出:“对这个定理的证明,可以用别的方法来证明,课本为什么要用这种方法来证明?”我首先针对甲学生提出和问题,启发学生议论认识平行线等分线段定理的推论2(经过三角形一边的中点与另一边平行的直线必平分第三边)的结论也隐含着三角形中位线,解决了课本中为什么要“过D作DE///BC,交AC于E/”的问题,可见DE/与DE重合,因此DE//BC,从而使学生对课本的证明思路和方法理解畅通。小结强调要领会“重合---同一”这种证明方法,指出它在往后学习应用中,还将出现。回答了课本中为什么采用这种证明方法的原因。再而在乙学生提出可用别的证明方法的带动下,我组织全班学生合作探索,通过添加不同的辅助线,运用平行线、三角形全等、平行四边形等知识得出这一定理的多种证明方法,使学生深化认识,培养学生综合运用知识的能力,发散思维能力,体验合作学习成功的乐趣。

(4)练:这环节的目的是巩固知识,培养能力,发展智力。教师要精心设计练习题,突出解题的思路和思想方法,突出在练习过程所出现的难点、疑点,先让学生独立思考,小

组共同议论,后由教师提问或学生板演的形式促进全班合作学习,创造性解决问题。例如解方程: 5(2x+1)+1=10+2(2x+1),由二个小组代表板演,第一小组解法是先去括号;另一小组则把2x+1看作一个整体,采用先移项合并即得3(2x+1)+1=10。后者解法较为简捷,这就是训练思维的灵活性、创新性的结果。

(5)结:就是对所学内容进行归纳整理,巩固深化所学知识。课堂小结也应师生合作参与进行。先让学生谈学习体会、学习心得,谈学习中应注意的问题,教师再予以“画龙点睛”。学生之间交流自身学习的体会,往往能击中知识和方法的关键点,更易于被同伴接受,起到教师单独小结不能达到的功效。同时也体现师生合作贯穿于课堂教学的全过程。

以上环节并非机械操作,要根据教学内容和学生学习实际情况而定,突出重点,合理调换环节顺序和合理安排活动时间,保证合作教学顺利进行。如单元复习课应以议、练、结为主;概念课则以读、议为主;练习课则以议、练为主。

3、强化人际互动,使学生参与教学活动

课堂合作教学包含了教师与学生之间的双边互动,教师与学生小组的双向交往,学生之间的多向互动等多种交流形式。生生互动占据了课堂教学的重要地位,因此重视小组内部与小组之间相互作用,使学生群体建立起一种互助合作关系,增加学生之间的信息沟通,让学生积极参与教学过程。主要做法是:

(1)组建好合作学习小组。合作学习是一种具有实际意义的学习方式。不能简单地认为,学生围坐在一起,进行简单的讨论,就会产生合作的效应。小组合作学习由以下要素构成:积极的相互支持配合;积极承担在完成共同任务中个人的责任;所有学生能进行沟通,小组成员之间相互信任;对于个人完成的任务进行小组加工,以及对活动成效进行评估等。学生之间的合作交流,规模要小一些,以4至6人为宜,应由能力不同、性格各异的学生组成。为了使学生合作成功,还必须使学生在自己组内感到愉快。因此,组建合作学习小组前,教师应该熟悉和掌握每个学生的能力、个性和他们之间的人际关系,应当要求学生表明愿意和那些同学在一起。分组时,教师应尽可能给予考虑照顾,使每个学生都有一个好伙伴和他同组,促进小组内部有效合作。

(2)教育学生正确对待合作的争论。合作必有争论,争论的情境和气氛应是合作性的,而不是竞争性的。应强调整体目标,而不是个人目标。在合作的气氛下,争论无所谓输赢,而是互相尊重、互相学习。大家在一起集思广益,充分听取每个人的意见,发挥每个人的创造性。最后在分析综合各种意见的基础上,找到解决问题的最佳方法,达到学习的目标。

(3)师生换位。引导学生充当小老师,让学生到讲台上,代替教师完成一些他们能够做到

的事。如:分析解题思路、总结解题方法及经验、评讲同学板演的内容、组织全班学生对各小组合作学习进行评价等等,这些都是促使学生参与合作教学的有效方法。

(4)及时对各小组的合作学习效果进行评价。通过评价激励,使小组成员感受到他们同在“一条船”上,荣辱与共,从而在学习过程中,共同协作,互相学习,取长补短,各尽其才。使学生之间做到“人人教我,我教人人”。在课外,小组成员也互帮互学,共同提高。

三、体会

1、留给学生独立思考的时间,实施有效的课堂讨论

新课程培养目标是培养有独立思考和独立行为的人。我们应充分认识课改精神,新课程所倡导的合作学习,必须是建立在自主探索的基础上才是行之有效的,没有自主探索的合作交流是无根之木、无源之水,学生的智慧就不能发生碰撞,思想就不会实现交融。在刚开始实行合作学习时,当教师一宣布讨论,学生就“千姿百态”:有的是你说你的,我说我的,互相“干扰”;有的是一言不发,静当“听众”;有的是交头接耳,窃窃私语,东张西望,是“自得其乐”。从表面上看学生是动起来了,小组合作学习也开展起来了,课堂气氛也很活跃。但仔细观察便会发现:学生一会儿忙这,一会儿忙那,教室里乱糟糟、闹哄哄,这些只停留在形式上的热热闹闹,不能真正激发学生深层次的思维。讨论时间一到,教师就指名汇报,这样合作的“含金量”能有几分?

合作能提升人的能力,能形成集体的智慧,但应以每个学生的独立思考为前提,有针对性、目的性的讨论,才能达到自主学习的要求。如何才能做到这一点呢?在出现问题后,不要急于组织或要求学生讨论,应留给学生一定的独立思考时间,等学生有了自己的想法后再参与讨论,组内同学互相交流看法时要言之有物,言之有理,并轮流在班内发言,再由本组同学补充,然后征求全班同学的意见,最后达成共识。否则课堂内的讨论与交流将流于形式,如有些讨论时间小于2分钟,学生在叽叽嘎嘎地说,谁也听不清楚。这样讨论,很难培养学生独立思考和终身学习的能力,极易助长部分学生的依赖心理,造成两极分化。因此,在学生合作学习的过程中,既要让学生养成良好的倾听习惯,留给每一位同学都有表达自己看法的时间与机会,还要根据学习小组的特点,有针对性地指导学生勇于表达自己的看法和想法,达到互相促进,共同成长的目的。

2、通过教师的指导,发展学生的知识和技能

不仅学生之间要相互合作,师生之间也要相互合作,营造心理相融的学习氛围。教师是学生的重要的合作伙伴,教师要信任学生,也要让学生相信教师。教师要展示自己的个性及魅力,在学生学习过程中,教师是平等中的首席,教师要把握好学生学习方式及学习内容

的呈现,适时组织学习方法及知识的交流,给学生以鼓励,形成激励机制,同时引导学生用准确的语言表达自己的思维过程。通过教师和学生的互动方式,拓宽和丰富学生的知识,激发学习兴趣。

当教师提出问题让学生探索并寻找答案时,要放手让学生活动,但要避免学生兴奋过度或活动过量,应当具体研究怎样放,怎样收;什么时候放,什么时候收。有时讨论中出现“争执不下”的现象,我们要注意教给学生一些沟通的技巧,如多查找相关资料,多做思考和交流,去除自我为中心的思想、专心倾听别人发表意见、不随便打断别人发言、能够整合不同的观点、汲取彼此的智慧,尊重事实、形成共识等。

在进入教师的指导阶段时,要先搜集各组汇报的疑惑,有针对性的进行指导。学生可以解决的问题就不用去指导,学生没有解决的问题,要做到有效的指导。尤其应注意的是,当学生进行小组合作讨论时,教师不能站在一旁无所事事,须知此时是捕捉学生发言中有价值的东西的良机。此时教师应以听、看为主,把注意力集中在了解上,在此基础上,迅速地思考下一步的教学应作哪些调整,哪些问题值得全班讨论,哪些问题需要教师讲解。教师要做出最恰当的选择,才能引导学生深入讨论,挖掘问题的内涵和外延。只有这样,才能发挥教师的作用,更有效地促进合作学习。

四、结束语

改革创新课堂教学是提高教学质量的重要措施。进行课堂合作教学可大大增强了班集体的内聚力,学生之间较为团结,互相帮助,互相学习;由被动学习变为主动学习,学习困难也减少了;在平等、宽松、和谐的民主合作气氛中,学生积极参与教学,经历成功的体验和表现自己才能的机会, 在交流合作过程中,既可看到自己的长处,也发现自己的学习潜力,从而更加努力,更有信心投入学习,学业成绩也得到大面积的提高。

合作学习以现代社会认知心理学、教育社会学、现代教育技术学等理论为基础,以研究与利用课堂教学中的人际关系为基点,以目标设计为先导,生生、师生合作为基本动力,以小组活动为基本教学形式,以团体成绩为评价标准,以标准参照评价为基本手段,以大面积提高学生的学业成绩、改善班内的社会心理气氛、形成学生良好的心理品质和社会技能为根本目标,是一种极富创意与实效的教学理论与策略体系。借以此文抛砖引玉,以期得到同行的指正和帮助。

初一下数学小论文【第二篇】

什么是数学?百科全书上是这么定义的,数学是研究数量、结构、变化以及空间模型等概念的一门学科。透过抽象化和逻辑推理的使用,由计数、计算、量度和对物体形状及运动的观察中产生。可能你仍然不明白何为数学。通俗的说,数学就是一门关于计算的课程。

那么,数学到底体现在哪里呢?事实上,我们的生活中,数学无处不在。精密的数学竟然能跟拿袜子扯上边。关于拿多少只袜子能配成对的问题,答案并非两只。我敢担保在冬季黑蒙蒙的早上,如果我从装着黑色和蓝色袜子的抽屉里拿出两只,它们肯定无法配成一对。但是如果我从抽屉里拿出3只袜子,我敢说肯定会有一双颜色是一样的。不管成对的那双袜子是黑色还是蓝色,最终都会有一双颜色一样。当然只有当袜子是两种颜色时,这种情况才成立。如果抽屉里有3种颜色的袜子,例如蓝色、黑色和白色,你要想拿出一双颜色一样的,则至少要取出4只袜子。如果抽屉里有10种不同颜色的袜子,你就必须拿出11只。根据上述情况总结出来的数学规则是:如果你有N种类型的袜子,你必须取出N+1只,才能确保有一双完全一样。

说完拿袜子,让我们讨论一下燃烧绳子的方法。一根绳子,从一端开始燃烧,烧完需要1小时。现在你需要在不看表的情况下,仅借助这根绳子和一盒火柴测量出半小时的时间。你可能认为这很容易,你只要在绳子中间做个标记,然后测量出这根绳子燃烧完一半所用的时间就行了。然而不幸的是,这根绳子并不均匀,有些地方比较粗,有些地方却很细,因此这根绳子不同地方的燃烧率不同。也许其中一半绳子燃烧完仅需5分钟,而另一半燃烧完却需要55分钟。面对这种情况,似乎想利用上面的绳子准确测出30分钟时间根本不可能,但是事实并非如此,大家可以利用一种创新方法解决上述问题,这种方法是同时从绳子两头点火。绳子燃烧完所用的时间一定是30分钟。

同样类似的问题还有火车相向而行问题。两列火车沿相同轨道相向而行,每列火车的时速都是50英里。两车相距100英里时,一只苍蝇以每小时60英里的速度从火车A开始向火车B方向飞行。它与火车B相遇后,马上掉头向火车A飞行,如此反复,直到两列火车相撞在一起,把这只苍蝇压得粉碎。苍蝇在被压碎前一共飞行了多远?我们知道两车相距100英里,每列车的时速都是50英里。这说明每列车行驶50英里,即一小时后两车相撞。在火车出发到相撞的这一小时,苍蝇一直以每小时60英里的速度飞行,因此在两车相撞时,苍蝇飞行了60英里。不管苍蝇是沿直线飞行,还是沿“Z”形线路飞行,或者在空中翻滚着飞行,其结果都一样。

日常生活中,你一定投掷过硬币。可是,你知道吗,掷硬币并非最公平的。人们认为这种方法对当事人双方都很公平。因为他们认为钱币落下后正面朝上和反面朝上的概率都一样,都是50%。但是有趣的是,这种非常受欢迎的想法并不正确。首先,虽然硬币落地时立在地上的可能性非常小,但是这种可能性是存在的。其次,即使我们排除了这种很小的可能性,测试结果也显示,如果你按常规方法抛硬币,即用大拇指轻弹,开始抛时硬币朝上的一面在落地时仍朝上的可能性大约是51%。之所以会发生上述情况,是因为在用大拇指轻弹时,有些时候钱币不会发生翻转,它只会像一个颤抖的飞碟那样上升,然后下降。如果下次你要选择,你应该先看一看哪面朝上,这样你猜对的概率要高一些。但是如果那个人是握起钱币,又把拳头调了一个个儿,那么,你就应该选择与开始时相反的一面。

总之,数学在生活中无处不在。

生活中处处有数学,生活中处处藏着数学的奥妙,我曾看见过这样的一个报道:一个教授问一群外国学生:“12点到1点之间,分针和时针会重合几次?”那些学生都从手腕上拿下手表,开始拨表针;而这位教授在给中国学生讲到同样一个问题时,学生们就会套用数学公式来计算。评论说,由此可见,中国学生的数学知识都是从书本上搬到脑子中,不能灵活

运用,很少想到在实际生活中学习、掌握数学知识。从这以后,我开始有意识的把数学和日常生活联系起来。有一次,妈妈烙饼,锅里能放两张饼。我就想,这不是一个数学问题吗?烙一张饼用两分钟,烙正、反面各用一分钟,锅里最多同时放两张饼,那么烙三张饼最多用几分钟呢?我想了想,得出结论:要用3分钟:先把第一、第二张饼同时放进锅内,1分钟后,取出第二张饼,放入第三张饼,把第一张饼翻面;再烙1分钟,这样第一张饼就好了,取出来。然后放第二张饼的反面,同时把第三张饼翻过来,这样3分钟就全部搞定。我把这个想法告诉了妈妈,她说,实际上不会这么巧,总得有一些误差,不过算法是正确的。看来,我们必须学以致用,才能更好的让数学服务于我们的生活。

数学就应该在生活中学习。有人说,现在书本上的知识都和实际联系不大。这说明他们的知识迁移能力还没有得到充分的锻炼。正因为学了不能够很好的理解、运用于日常生活中,才使得很多人对数学不重视。希望同学们到生活中学数学,在生活中用数学,数学与生活密不可分,学深了,学透了,自然会发现,其实数学很有用处。

生活中处处有数学,比如说抽屉原理,“任意367个人中,必有生日相同的人。”“从任意5双手套中任取6只,其中至少有2只恰为一双手套。”“从数1,2,...,10中任取6个数,其中至少有2个数为奇偶性不同。”

大家都会认为上面所述结论是正确的。这些结论是依据什么原理得出的呢?这个原理叫做抽屉原理。它的内容可以用形象的语言表述为:

“把m个东西任意分放进n个空抽屉里(m>n),那么一定有一个抽屉中放进了至少2个东西。”

在上面的第一个结论中,由于一年最多有366天,因此在367人中至少有2人出生在同月同日。这相当于把367个东西放入366个抽屉,至少有2个东西在同一抽屉里。在第二个结论中,不妨想象将5双手套分别编号,即号码为1,2,...,5的手套各有两只,同号的两只是一双。任取6只手套,它们的编号至多有5种,因此其中至少有两只的号码相同。这相当于把6个东西放入5个抽屉,至少有2个东西在同一抽屉里。

抽屉原理的一种更一般的表述为:

“把多于kn个东西任意分放进n个空抽屉(k是正整数),那么一定有一个抽屉中放进了至少k+1个东西。”

利用上述原理容易证明:“任意7个整数中,至少有3个数的两两之差是3的倍数。”因为任一整数除以3时余数只有0、1、2三种可能,所以7个整数中至少有3个数除以3所得余数相同,即它们两两之差是3的倍数。

如果问题所讨论的对象有无限多个,抽屉原理还有另一种表述:

“把无限多个东西任意分放进n个空抽屉(n是自然数),那么一定有一个抽屉中放进了无限多个东西。”

抽屉原理的内容简明朴素,易于接受,它在数学问题中有重要的作用。许多有关存在性的证明都可用它来解决。

1958年6/7月号的《美国数学月刊》上有这样一道题目:

“证明在任意6个人的集会上,或者有3个人以前彼此相识,或者有三个人以前彼此不相识。”

这个问题可以用如下方法简单明了地证出:

在平面上用6个点A、B、C、D、E、F分别代表参加集会的任意6个人。如果两人以前彼此认识,那么就在代表他们的两点间连成一条红线;否则连一条蓝线。考虑A点与其余各点间的5条连线AB,AC,...,AF,它们的颜色不超过2种。根据抽屉原理可知其中至少有3条连线同色,不妨设AB,AC,AD同为红色。如果BC,BD,CD3条连线中有一条(不妨设为BC)也为红色,那么三角形ABC即一个红色三角形,A、B、C代表的3个人以前彼此相

识:如果BC、BD、CD3条连线全为蓝色,那么三角形BCD即一个蓝色三角形,B、C、D代表的3个人以前彼此不相识。不论哪种情形发生,都符合问题的结论。

六人集会问题是组合数学中著名的拉姆塞定理的一个最简 单的特例,这个简单问题的证明思想可用来得出另外一些深入的结论。这些结论构成了组合数学中的重要内容——拉姆塞理论。从六人集会问题的证明中,我们又一次看到了抽屉原理的应用。

生活中处处有数学,比如说一元一次方程,通常形式是kx+b=0(k,b为常数,且k≠0)。一元一次方程属于整式方程,即方程两边都是整式。一元指方程仅含有一个未知数,一次指未知数的次数为1,且未知数的系数不为0。

我们将ax+b=0(其中x是未知数,a、b是已知数,并且a≠0)叫一元一次方程的标准形式。这里a是未知数的系数,b是常数,x的次数是1。

ax=b

1,当a≠0,b=0时,方程有唯一解,x=0;

2,当a≠0,b≠0时,方程有唯一解,x=b/a。

3,当a=0,b=0时,方程有无数解

4,当a=0,b≠0时,方程无解

例:(3x+1)/2-2=(3x-2)/10-(2x+3)/5

5(3x+1)-10×2=(3x-2)-2(2x+3)

15x+5-20=3x-2-4x-6

15x-3x+4x=-2-6-5+20

合并同类项!

16x=7

x=7/16

示例:小明把压岁钱按定期一年存入银行。当时一年期定期存款的年利率为%,利息税的税率为20%。到期支取时,扣除利息税后小明实得本利和为元。问小明存入银行的压岁钱有多少元?解:设小明存入银行的压岁钱有x元,则到期支取时,利息为%x元,应缴利息税为

%x×20%=元,

x+=

=

∴x=500

答:小明存入银行的压岁钱有500元。

生活中处处有数学,还有统计图:第五次人口普查。

数学,就像一座高峰,直插云霄,刚刚开始攀登时,感觉很轻松,但我们爬得越高,山峰就变得越陡,让人感到恐惧,这时候,只有真正喜爱数学的人才会有勇气继续攀登下去,所以,站在数学的高峰上的人,都是发自内心喜欢数学的。记住,站在峰脚的人是望不到峰顶的。

初一数学论文_【第三篇】

一元一次不等式的教学设计

一、教学目标

掌握一元一次不等式的解法,并能熟练解一元一次方程。

二、教学的重点与难点

1、重点:一元一次不等式的解法

2、难点:解一元一次不等式中性质3的运用

三、教学过程

(一)创设情境,复习引入

1、下列是一元一次不等式的( )

A、2x-1≤0 B、 2+3<12 C、-12x-6>-3 D、 ≥1 3x

2、一元一次不等式的性质是什么?

设计意图:让学生温故而知新,为新课做了垫基。

(二)讲授新课

1、解方程:2x+3=1-x

意图:方程与不等式的类比,让学生在解例1时与解方程的异同作比较,加强比不等式性质 3的运用。

2、例1 解不等式3-x<2x+6,并把它的解集表示在数轴上。

(由学生独立完成,再由四个组学生代表上黑板演示,师生共同评价)

意图:激发学生的求知欲,让学生自觉、主动地获取新知。

师提出问题:解一元一次不等式与一元一次方程有哪些异同点?

(学生小组讨论,并代表发言)

意图:在课堂上发挥学生是学习的主角地位,加深学生对解方程与不等式的理解。在解不等式时对性质3的巩固。

3、例3、例4

(学生独立完成并小组代表上黑板演示,师再讲评,对例3中的去括号及例4中的去分母学生易出错处着重讲评。)

4、归纳:解一元一次不等式的步骤和解一元一次不等式的依据及注意事项。

解一元一次不等式的步骤:去分母——去括号——移项——合并同类项——把系数化为了。

注意:不等式两边同时乘或除以同一个负数不等号的方向要变号

(学生小组讨论后再发言,师评价与总结)

(三)练习巩固

练习1、判断下列不等式是不是一元一次不等式,为什么?

x (1)3x+2>x–1(2) 5x+3<0 (3)+3<5x–1 (4) x(x–1)<2x 2

2、解下列不等式,并把它们的解集在数轴上表示出来

(1)3x+8<7x–12(2)2(x+2)≥x–4(3)x3x≥3+ 35

意图:及时巩固所学内容,进一步使学生掌握解一元一次不等式的方法。

(四)小结

由学生谈谈这节课的收获,师再进一步强度在解一元一次不等式时的注意事项。 意图:把本节课的知识系统化,进一步让学生对解一元一次不等式的巩固。

(五)布置作业:达标检测

[必做]解下列不等式,并把它们的解集在数轴上表示出来

2x3 (1)2(1+3x)>20–3x(2)≥x–6 7

3x3x2[选做题](1)x取何值时,代数式的值比的值大? 34

(2)]已知y=4x–3,试求:当x取何值时,y>0?当y取何值时,x< 意图:让学生进一步巩固本课内容,及使不同学生得到不同的发展。

初一数学论文_【第四篇】

[摘要] 数学的教学,最终要教师本人落实到课堂中去,要做到切实提高课堂教学效果,就要求我们教师“凡是你教的东西,就要教的透彻”。教师只有不断揣摩教材,才能对教材有独到的体悟,在课堂教学中也才能做到“精彩纷呈”。数学教师的教学,就应拉近数学与学生的距离,让学生感受到它的火热,享受数学中生动的故事。把数学的形式化逻辑链条,恢复为当初数学家发明创新时的火热思考,做到返璞归真。

[关键词] 数学本质 返璞归真 火热思考 主动建构

教师的教学在于能够“授人以业”、“授人以法”、“授人以道”。从所授知识要求的角度来看,“授人以业”要求所授知识“准确”;“授人以法”要求所授知识“深刻”,而“授人以道”则更多地要求所授知识“本质”。显然,一堂高效的数学课教学必须呈现“数学本质”。对于“数学本质”本身不同的理解有不同的视角,我们在课堂中要追求的“数学本质”,一般其内涵包括:数学知识的内在联系;数学规律的形成过程;数学思想方法的提炼;数学理性精神(依靠思维能力对感性材料进行一系列的抽象和概括、分析和综合,以形成概念、判断或推理,这种认识为理性认识。重视理性认识活动,以寻找事物的本质、规律及内部联系)的体验等方面。

基于对“数学本质”内涵的认识,本人认为要在课堂中呈现“数学本质”,提高初中数学课堂效果,应从以下几个方面下功夫。

一、教师要深透领悟教材内容

数学的教学,最终要教师本人落实到课堂中去,要做到切实提高课堂教学效果,就要求我们教师“凡是你教的东西,就要教的透彻”。为求透彻,教师必须深钻教材,“沉下去”,理清知识发生的本原,把握教材中最主要、最本质的东西。回顾自己上过的许多的课,总感到有些许的憾意:课堂缺少耐人回味的东西,缺少引起学生思考的部分,对教材内容的领悟浅薄,缺少厚重感。本人认为要弥补这些憾意,教师对教材的领悟必须有自己的眼光,目光要深邃,看到的不能只是文字、图表和各种数学公式定理,而应是书中跳跃着的真实而鲜活的思想。这种思想就是对“数学本质”的认识,这种思想就是“不在书里,就在书里”,这

种思想能让所有教材内容融入到教师的思维中,成为教学的能力源泉。“一个能思想的人,才是一个力量无边的人。”教师只有不断揣摩教材,才能对教材有独到的体悟,在课堂教学中也才能做到“精彩纷呈”。

让我们来看一则例子:

若E、F、G、H分别是四边形ABCD各边的中点,说明四边形EFGH是平行四边形的理由。这是初中数学中很典型的一道题目,连接AC,利用三角形的中位线定理,很容易证明。对此我们可以进一步思考,适当地替换它的条件,再考察它的结论的变化情况。

思考1:如果把条件中的四边形ABCD依次改变为矩形、菱形、正方形或梯形、等腰梯形,其它条件不变,那么所得的四边形EFGH是怎样的四边形呢?

思考2:如果把结论中的平行四边形EFGH依次改变为矩形、菱形或正方形,那么原四边形ABCD应具备什么条件呢?

思考3:如果条件中的中点替换为定比分点,那么四边形EFGH是怎样的四边形呢? 思考4:如果把条件中一组对边的中点改为两条对角线的中点,其它条件不变,则四边形EFGH是怎样的四边形呢?

面对这么多的变化,学生肯定头疼,如果抓住了四边形ABCD的对角线是相等,还是垂直,还是既相等又垂直,还是既不相等又不垂直这一本质特征,那么这类问题就都可迎刃而解,学生掌握起来容易也乐于掌握。通过这类题目的解答,让学生领悟:数学问题千变万化,而其中的方法是相通的。学习数学重在掌握这种具有普遍意义,能反映数学本质的知识。注重问题间的类比,使解题总结成为自觉的行动,这样可以达到举一反三、由例及类,解一题通一片的目的。

可以再看一例:

已知a、b、m都是正整数,并且a

假如令b表示溶液(糖水),a表示常溶质(糖),那么 是糖水(不饱和)的浓度。现向糖水中再放糖m>0,糖水变甜,这就是不等式 的现实意义,也体现了该不等式的价值。

至此,作为教师还可进一步思考,其实还可以进一步导出下面的结论:

(1) 若a、b、m都是正数,并且a

(2) 若a、b、m、n都是正数,并且a

(3) 若a、b、m、n都是正数,并且a

甚至还可以提出:现在,如果将两杯浓度不一样甜的糖水( )倒在一起,甜度会怎样?

显然,甜度在原来两种甜度之间: 。

事实上,初中数学有许多问题都具有生活背景和意义。这需要我们教师深入课本用心体会,在教学中发掘问题的内在联系,抽象问题的本质,进而用数学语言(符号)来表达问题的实质。这样引导,对数学本质会有更深的认识。

二、教师要真正做到把数学知识“返璞归真”

对许多初中学生来说,学数学难,但又必须学。在学生眼里,数学是一个又

一个公式、符号、定理、习题的堆积,它们是如此的抽象、散乱、遥远、不可琢磨,它们就象石塑一般------充满着理性精神的美却显得冰冷和生硬。数学本来是这样,还是我们的数学教学的原因?翻看人类的数学思想史,在数学“冰冷的逻辑推理之中有一大堆生动的故事”,其“冰冷美丽”的外表下存在着“朴素而火热的思考”。数学教师的教学,就应拉近数学与学生的距离,让学生感受到它的火热,享受数学中生动的故事。把数学的形式化逻辑链条,恢复为当初数学家发明创新时的火热思考,做到返璞归真。

让我们来看一段函数增减性的教学:

教师:现在最让中国人骄傲的篮球运动员是谁?

学生:姚明。

教师:你们知道姚明的身高是多少?

学生:米。

教师:姚明一出生就是米吗?

众学生:不是。(教师用多媒体展示姚明部分年龄段身高的直方图)

教师:我们以姚明的年龄为自变量,姚明的身高为函数值建立一个函数关系,能否得到以下结论-----姚明身高随年龄增加而增高?

学生有的说对,有的说不对,教师不急于揭示答案,而是把学习的目标引向了函数关系中两个变量变化大小的相互依赖关系上。学生所熟悉的生活实例既是激发学生学习兴趣的手段,也是学生理解函数增减性的现实背景。

接下来,教师让学生观察函数y=x2(x≥0)图像的x值与y值的动态变化效果,得出如下结论:

(1) 函数的图像向坐标系右上方延伸;

(2) 随x取值的增大,y的值越来越大。

这时,教师可以总结:这种随x的增大,y也随之增大的现象称为y随x的

增大而增大。类似地,在学生观察了函数y=x2(x≤0)图像的动态效果后,得出这种随x

的增大,y越来越小的现象称为y随x的增大而减小。

通过一个生活背景的实例和对函数y=x2图像的直观观察,产生了函数增减性的生活语言的描述,使学生理解到的是两个变量之间具有依赖性的增减关系。这是函数增减性中最为基本和初始的思想,是根本性的要素,也是从生活中原初思想迈向数学知识的关键一步。

回顾关于姚明身高的话题,有学生指出姚明的身高不可能随年龄的增长不断长下去,因为到一定年龄以后身高还会变矮;因此,姚明身高与年龄的关系严格地说应该是:姚明在某年龄段身高随年龄增长而增高。这时,教师抓住“分情况讨论”使学生认识到函数的增减性与其取值范围有关。因此,在描述函数增减性时,应该说清楚x在哪个取值范围内,从而使学生对增减性的理解从图像的直观体验向数学化的严格性迈进了一步

毋庸置疑,数学教材中的数学知识大多是形式地摆在那儿的,准确的定义,逻辑的演绎,严密的推理,一个字一个字地印在纸上。这种形式地、演绎地呈现出来的数学,看上去确实是冷冰冰的,我们上课时如果照本宣科,学生就很难进行“火热的思考”和主动地建构,也就难以欣赏“冰冷的美丽”,从而也就难以领会数学的本质。

三、教师要尊重学生接受知识的已有基础本质

“万丈高楼起于平地,千里之行始于足下。”学生能接受新知识是建立在其原有的基础水平之上。教师应该以学生现有思维发展水平为依据,关注学生已有的知识和经验,选择与学生发展水平相适应的学习材料,为学生设置恰当的教学情境,使学生对新知识进行充分的思维加工,通过新知识与已有认知结构之间的相互作用,使新知识同化到已有认知结构中去,达到对新知识的相应理解和主动建构。

来看这样两道题目:

(1)有两个商场在节前进行商品降价酬宾销售活动,分别采用两种降价方

案:甲商场是第一次打p折销售,第二次找q折销售;乙商场是两次都打 折销售。请问:哪个商场的价格最优惠?

(2)今有一台天平两臂之长略有差异,其他均精确。有人要用它称量物体的重量,只须将物体放在左右两个托盘中各称一次,再将称量结果相加后除以2就是物体的真实重量。你认为这种做法对不对?如果不对的话,你能否找到一种用这种天平称量物体重量的正确方法?

以上两个问题,其情境贴近生活,贴近实际,与学生的认知相符合,给学生创设了一个观察、联想、抽象、概括、数学化的过程。在这样的基础上,再注意给学生动手、动脑的空间和时间,往往能取得良好的教学效果。

再比如在讲授“距离”这一块内容。初中阶段学过的距离有“两点之间的距离”,“直线外一点到已知直线的距离”“两平行线之间的距离”,这些概念学生往往很容易混淆,对于基础较弱的学生来说理解起来有一定的困难。如果我们这样向学生解释几何中关于两个图形间的距离的概念:图形P内的任一点与图形Q内的任一点间的距离中的最小值,叫做图形P与图形Q的距离。由此,学生对“两点之间的距离”,“直线外一点到已知直线的距离”“两平行线之间的距离”的定义会有更深一步的理解与体会,也能从本质上深刻地认识到两个图形之间的距离最终“化归”为点与点的距离。掌握了这一点,即便是学生以后到高中段学习“点到平面的距离、直线到它平行的平面的距离、两个平行平面的距离、异面直线的距离”的概念时学生也能做到不教自明。

奥苏伯认为,学习过程是在原有认知结构基础上,形成新的认知结构的过程;原有的认知结构对于新的学习始终是一个最关键的因素;一切新的学习都是在过去学习的基础上产生的,新的概念、命题等总是通过与学生原来的有关知识相互联系,相互作用条件下转化为主体的知识结构。因此我们教师在平时进行教学时,要以学生现有思维发展水平为依据进行教学,必须尊重学生现有发展水平。而要尊重学生现有发展水平,就是要承认学生学习能力上的限度,要接受学生看待问题的方式方法,要容忍学生的学习错误,并看到错误背后隐含的合理因素。事实上,每一个学生都有自已的活动经验和知识积累,都有自己对客观事物的独特理解方式,也许,这种理解在教师看来是不全面的、不合理的,有时甚至是错误的,但对学生来说却是有意义的,因为学生是在他现有思维发展水平上来理解事物的,是从他自己看问题的角度看待事物的。教师只有充分尊重学生现有的学习能力,才能使自己的教学真正促进学生的发展。教学的一个最重要的出发点是学生已经知道了什么。教学的策略就在于怎样建立学生原有认知结构中相应的知识和新知识的联系,以及激发学生有意义学习的心向。

综上所述,本人认为,高境界的数学课堂教学必须呈现“数学本质”。“持之以恒,贵在变通”,在数学的教学过程中,在领会知识的同时,要让学生理解数学最本质的方法,朴素的思想,同时又要重视基础知识,基本技能和基本思想方法。重视通性通法,注重数学问题解决过程中的挖掘,提炼与渗透,挖掘数学知识本身的内在本质,增强运用数学思想方法解决问题的意识和自觉性,重视运用所学知识分析问题和解决问题的能力,而不是简单的掌握知识,解决“会”与“对”的矛盾。只有这样,就一定会让学生在学习数学和教师在教的的过程中都找到乐趣,提高学生的数学素养和能力。

参考文献:

1、张奠宙·关于数学知识的教育形态·数学通报·2010,5

2、黄晓学·让鲜活的思想在数学课堂中流淌·数学教育报·2009,1

3、涂荣豹·数学学习中的元认知·数学教育学报·2008,4

48 424753
");