数学知识点解析与应用(通用8篇)
【写作参考】一篇好的范文往往能让您的写作事半功倍,下面是由阿拉题库网友为您分享的“数学知识点解析与应用(通用8篇)”优质范例,供您写作参考之用,轻松写作,远离加班熬夜,希望以下内容对您有所帮助,喜欢就下载支持吧!
数学知识点解析与应用【第一篇】
用方程式去解答应用题求得应用题的未知量的方法。
弄清题意,确定未知数并用x表示;
找出题中的数量之间的相等关系;
列方程,解方程;
检查或验算,写出答案。
综合法:先把应用题中已知数(量)和所设未知数(量)列成有关的代数式,再找出它们之间的等量关系,进而列出方程。这是从部分到整体的一种思维过程,其思考方向是从已知到未知。
分析法:先找出等量关系,再根据具体建立等量关系的需要,把应用题中已知数(量)和所设的`未知数(量)列成有关的代数式进而列出方程。这是从整体到部分的一种思维过程,其思考方向是从未知到已知。
范围内常用方程解的应用题:
a一般应用题;
b和倍、差倍问题;
c几何形体的周长、面积、体积计算;
d分数、百分数应用题;
e比和比例应用题。
数学知识点解析与应用【第二篇】
在中国古代把数学叫算术,又称算学,最后才改为数学。数学分为两部分,一部分是几何,另一部分是代数。数学网为大家推荐了高一数学必修一第三章函数的应用知识点,请大家仔细阅读,希望你喜欢。
函数的应用这一章包括两个内容,分别是函数与方程、函数模型及其应用。
函数与方程这一节知识汇总。
知识点一:方程的根与函数的零点。
知识点二:函数与方程的思想。
知识点三:用二分法求解方程的近似解。
函数模型及其应用这一节知识汇总。
知识点一:几类不同增长的.函数模型(对数函数模型、幂函数模型和指数函数模型)。
知识点二:用已知函数模型解决问题(一次函数、二次函数和基本初等函数)。
知识点三:建立实际问题的函数模型。
在本章中我们要理解函数与方程的思想,函数与方程怎么联系和转化,这是函数与方程思想的本质,函数反映变量之间的动态变化规律,实际生产生活中,这种变化随处可见,如何利用函数来揭示,这就是函数模型所要应用的。
数学知识点解析与应用【第三篇】
我们知道,全体自然数按能否被2整除可以分为奇数,偶数两大类。被2除余1为奇数,被2整除为偶数。它们还有一些特殊的性质,例如,奇数偶数,奇数和奇数之和是偶数等。灵活、巧妙、有意识地利用这些性质,加上正确的分析推理,可以解决许多复杂而有趣的问题。用奇偶性质解题的方法就称为奇偶分析。巧妙运用奇偶分析,往往有意想不到的效果。
原来,根据俱乐部的全体成员围成一圈,每个老实人两旁都是骗子,每个骗子两旁都是老实人的条件,可见俱乐部中的老实人与骗子人数相等,也就是说俱乐部全体成员总和是偶数。因此张三说45人一定是骗人的。这实质上是利用了对应的思想。
原来对每一枚硬币来说,只要翻动奇数次,就可使原先朝下的一面朝上。按规定的翻动,其翻动1+2++77=3977次,平均每枚硬币翻动了39次,这是奇数。根据7739=77+(76+1)+(75+2)++(39+38)可以设计如下翻动方法:
第1次翻动77枚,可以将每枚硬币翻动一次;第2次与第77次翻动77枚,又可将每枚硬币都翻动一次;同理第3次与第76次,第4次与第75次第39次与第40次都可将每枚硬币各翻动一次,这样每枚都翻动了39次,都由正面朝下变为正面朝上。
针对数的奇偶性,还有很多富有智慧性的问题。例如,有足够多的三种水果:苹果、梨、桔子,最少要分成多少堆(每堆都有苹果、梨、桔子),才能保证得到这样的两堆,把这两堆合并后这三种水果的水果的个数都是偶数。我们可以借助列表来解决。
可见,三种水果的奇偶情况共有8种可能,所以必须最少分成9堆,才能保证有两堆的三种水果奇偶性完全相同,把这两堆合并后这三种水果个数都是偶数。
你瞧,如果你能巧妙地进行奇偶分析,你的智慧一定让人拍案叫绝!
数学知识点解析与应用【第四篇】
“百花齐放”“百家争鸣”
一、“双百”方针的提出。
1、“双百”方针的提出的背景:
(1)中华人民共和国成立后。
(2)1956年初,三大改造基本完成。
(3)党中央提出让知识分子在社会主义建设中发挥更大作用。
2、“双百”方针的提出:
(1)1956年春,_在中共中央政治局扩大会议上,正式提出在科学文化工作中,实行“百花齐放,百家争鸣”的方针,即艺术问题上“百花齐放”,学术问题上“百家争鸣”。
(2)_强调“百花齐放”“百家争鸣”是一个基本性的同时也是长期性的方针,不是一个暂时性的方针。
3、结果:
(1)“双百”方针提出后,科学技术和文学艺术领域出现了百花齐放、百家争鸣的繁荣景象。
来自
(2)代表人物及作品:
二、曲折的年代。
1、“双百”方针未能坚持贯彻下去的原因:
(1)_的扩大化,特别是“_”的到来,一些学术问题被当成政治问题,甚至上升为阶级斗争问题。
(2)不同的学术观点,被看作代表不同的阶级利益,一些优秀作品受到错误批判。
2、受到政治批判的人物及作品:
(1)王蒙的小说《组织部新来的青年人》。
(2)艾青的寓言诗《蝉的歌》。
(3)昆曲《李慧娘》和电影《北国江南》《早春二月》等。
(4)作者多被划为“右派”或“反动学术”,许多知识分子受到了伤害,文艺园地百花凋零。
(5)结果:自然科学和社会科学的研究受到很大影响。
三、文艺的春天。
1、出现的背景:
(1)“_”结束。
(2)党总结社会主义时期文艺工作的经验教训,明确文艺必须植根于人民生活。
(3)_指出,我们的文艺属于人民,要为人民服务,为社会主义服务。强调坚持贯彻“双百”方针,对我国发展科学文化具有重要意义。
(3)20世纪80年代初,中共中央提出加强社会主义精神文明建设,强调在进行经济建设的同时,还要发展教育、科学、文化事业。
2、繁荣的表现:
(1)反映“_”为主题的“反思文学”“伤痕文学”。
(2)以改革实践为主题的文学作品。
(3)还有反映丰富的社会生活的戏剧、电影,如《许茂和他的女儿们》《被爱情遗忘的角落》等。(4)科学和文艺工作者迎来了又一个春天。学术讨论空前热烈,文学艺术创作欣欣向荣。
数学知识点解析与应用【第五篇】
一元一次方程应用题的题型很多,每种题型又不完全孤立,其中有些题型的解题思想有相似之处,如工程问题和行程问题。所以一直受命题者青睐,近年来中考考查的实际问题多贴近生活,而且立意新颖,设计巧妙,所以决不能靠死背题型,要具体分析每一题的实际情况。
数学知识点解析与应用【第六篇】
*用方程式去解答应用题求得应用题的未知量的方法。
*弄清题意,确定未知数并用x表示;
*找出题中的数量之间的相等关系;
*列方程,解方程;
*检查或验算,写出答案。
*综合法:先把应用题中已知数(量)和所设未知数(量)列成有关的代数式,再找出它们之间的等量关系,进而列出方程。这是从部分到整体的一种思维过程,其思考方向是从已知到未知。
*分析法:先找出等量关系,再根据具体建立等量关系的需要,把应用题中已知数(量)和所设的未知数(量)列成有关的代数式进而列出方程。这是从整体到部分的一种思维过程,其思考方向是从未知到已知。
小学范围内常用方程解的应用题:
a一般应用题;
b和倍、差倍问题;
c几何形体的周长、面积、体积计算;
d分数、百分数应用题;
e比和比例应用题。
数学知识点解析与应用【第七篇】
对于数列4,5,6,7,8,9,10每一项的序号与这一项有下面的对应关系:
序号:1234567。
项:45678910。
这就是说,上面可以看成是一个序号集合到另一个数的集合的映射.因此,从映射、函数的观点看,数列可以看作是一个定义域为正整集n_(或它的有限子集{1,2,3,…,n})的函数,当自变量从小到大依次取值时,对应的一列函数值.这里的函数是一种特殊的函数,它的自变量只能取正整数.
由于数列的项是函数值,序号是自变量,数列的通项公式也就是相应函数和解析式.
数列是一种特殊的函数,数列是可以用图象直观地表示的.
数列用图象来表示,可以以序号为横坐标,相应的项为纵坐标,描点画图来表示一个数列,在画图时,为方便起见,在平面直角坐标系两条坐标轴上取的单位长度可以不同,从数列的图象表示可以直观地看出数列的变化情况,但不精确.
把数列与函数比较,数列是特殊的函数,特殊在定义域是正整数集或由以1为首的有限连续正整数组成的集合,其图象是无限个或有限个孤立的点.
数学知识点解析与应用【第八篇】
*用方程式去解答应用题求得应用题的未知量的方法。
2、列方程解答应用题的步骤
*弄清题意,确定未知数并用x表示;
*找出题中的数量之间的`相等关系;
*列方程,解方程;
*检查或验算,写出答案。
3、列方程解应用题的方法
*综合法:先把应用题中已知数(量)和所设未知数(量)列成有关的代数式,再找出它们之间的等量关系,进而列出方程。这是从部分到整体的一种思维过程,其思考方向是从已知到未知。
*分析法:先找出等量关系,再根据具体建立等量关系的需要,把应用题中已知数(量)和所设的未知数(量)列成有关的代数式进而列出方程。这是从整体到部分的一种思维过程,其思考方向是从未知到已知。
4、列方程解应用题的范围
小学范围内常用方程解的应用题:
a一般应用题;
b和倍、差倍问题;
c几何形体的周长、面积、体积计算;
d分数、百分数应用题;
e比和比例应用题。
上一篇:做针线活经典的说说(8篇)