数学一元一次方程教学设计热选8篇

网友 分享 时间:

【参照】优秀的范文能大大的缩减您写作的时间,以下优秀范例“数学一元一次方程教学设计热选8篇”由阿拉漂亮的网友为您精心收集分享,供您参考写作之用,希望下面内容对您有所帮助,喜欢就复制下载吧!

数学一元一次方程教学设计【第一篇】

重点难点。

难点:探究实际问题与一元一次方程的关系。

一、复习:

=5y+5。

2、

二、新授。

分析:这里可以把总工作量看做1。思考。

人均效率(一个人做1小时完成的工作量)为。

由x人先做4小时,完成的工作量为。再增加2人和前一部分人一起做8小时,完成的工作量为。

这项工作分两段完成,两段完成的工作量之和为。

解:设先安排x人工作4小时。

根据两段工作量之和应是总工作量,得。

去分母,得4x+8(x+2)=-1701。

去括号,得4x+8x+16=40。

移项及合并同类项,得。

12x=24。

系数化为1,得x=-243.

所以-3x=729。

9x=-2187.

答:这三个数是-243,729,-2187。

例4根据下面的两种移动电话计费方式表,考虑下列问题。

方式一方式二。

月租费30元/月0。

本地通话费元/月元/分。

(1)一个月内在本地通话200分和350分,按方式一需交费多少元?按方式二呢?

(2)对于某个本地通话时间,会出现按两种计费方式收费一样多吗?

解:(1)。

方式一方式二。

200分90元80元。

350分135元140元。

=30+。

移项,得=30。

合并同类项,得=30。

系数化为1,得t=300。

由上可知,如果一个月内通话300分,那么两种计费方式相同。

思考:你知道怎样选择计费方式更省钱吗?

解后反思:对于有表格实际问题,首先读清表格提供的信息,再根据问题找等量关系,设未知数,列方程,解方程,以求出问题的解。也就是把实际问题转化为数学问题。

三、巩固练习:94页9、10。

四、达标测试:《名校》55页

五、课堂小结:

(1)这节课我有哪些收获?

(2)我应该注意什么问题?

六、作业:课本第94页第9题学生作业,教师巡视帮助需要帮助的学生。在学生解答后的讲评中围绕两个问题:

(1)每一步的依据分别是什么?

(2)求方程的解就是把方程化成什么形式?

先让学生读题分析规律,然后教师进行引导:

允许学生在讨论后再回答。

在学生弄清题意后,教师引导学生说出规律,设一个未知数,表示其余未知数。

学生独立解方程方程的解是不是应用题的解。

教师强调解决问题的分析思路。

学生读题,分析表格中的信息。

教师根据学生的分析再做补充。

学生思考问题。

〖〗教师根据学生的解答,进行规范分析和解答。

数学一元一次方程教学设计【第二篇】

1.填空题(24%)。

(l)一次式-3中,常数项是___________.

(2)长方形的长为a厘米,宽为3厘米,则长方形的周长为____________厘米.

(3)当x=__________时,一次式-x+4的值是-4.

(4)某人骑车到外地参观,第一个小时走了x千米,第二个小时比第一小时少走3千米,则两小时内共走了_________千米.

(5)三个连续奇数,最小的一个为x,则其余两个的和为___________.

(6)甲的速度为每小时x千米,乙的速度是甲的速度的,两人同时同地出发,同向而行3小时后,他们两人间的距离为_________千米.

(7)某数的与某数的30%的和比某数小3,若设某数为x,则可得方程__________________.

(8)若某种商品的售出单价为a元,毛利润是售价的35%,则买入单价是_________元.

2.选择题。

(1)下列说法中正确的是。

(a)a是正数(b)-a是负数(c)a的.系数是1(d)-a的系数是1。

(a)x=y-2(b)2×3+1=7(c)-5=3x(d)-1=x。

(3)若方程ax+2=8x-6的解是x=-4,则a是()。

(a)160(b)(c)9(d)10。

(4)x=3是下面哪个方程的解()。

(a)5x=7+4x(b)3(x-3)=2x-3。

(c)=10(x+2)(d)4(x-2)=5-x。

(5)化简2x-2(1-x)的结果是()。

(a)3x-2(b)-2(c)4x-2(d)4x。

(6)把108册课外读物按2∶3∶4的比例分给初一(1)班、初一(2)班和初一(3)班的学生,则初一(2)班得到的课外读物为()。

数学一元一次方程教学设计【第三篇】

教学目标1.使学生掌握移项的概念,并能利用移项解简单的一元一次方程;2.培养学生观察、分析、概括和转化的能力,提高他们的运算能力。教学重点:移项解一元一次方程。教学难点:移项的概念教学方法:启发式教学教学过程:(一)情境创设(二):探索新知解方程:(1)3x-5=4.(2)7x=5x-4在分析本题时,教师应向学生提出如下问题:1.怎样才能将此方程化为ax=b的形式?2.上述变形的根据是什么?解:3x-5=4,方程两边都加上,得3x-5+5=4+5,(本题的解答过程应找多名学生分别口述,教师严格、规范板书,并请学生口算检验)解方程7x=5x-4.针对(1),(2)题的分析与解答,教师可提出以下几个问题:(1)将方程3x-5=4,变形为3x=4+5这一过程中,什么变化了?怎样变化的?(2)将方程7x=5x-4,变形为7x-5x=-4这一过程中,什么变化了?怎样变化的?我们将方程中某一项改变后,从方程的一边移到另一边,这种变形叫做移项。利用移项,我们可以将(2)题按以下步骤来书写。解:移项,得,合并同类项,得未知数x的系数化1,得(至此,应让学生总结出解诸如例1、例2这样的一元一次方程的步骤,并强调移项要变号).(三)自学例题:解方程:x-3=4-x解:移项,得和并同类项,得系数化为1练习:1(a)组(1)方程3x+6=2x-8移项后,得(2)方程=+3x移项,得(3)下列方程变形正确的是()a若3x+2=1,则3x=3b若-x+1=0,则-x=1c若x-1=3x,则-1=3x-xd若-=o,则x=4(4)用移项法解下列方程:(a)10y+7=12y-5-3y(b)+=x+2(c)=+x(d)9+x=2x+12-4x(四):教学小结:

数学一元一次方程教学设计【第四篇】

地位及作用:方程和方程组是第三学段数与代数的主要内容之一。一元一次方程是最简单、最基本的代数方成。它不仅在实际中有广泛的应用,而且是学习二元一次方程组等后继知识的基础。可以说它承前启后,有重要地位。还能培养学生的方程思想和建模能力,发展数感和符号感,提高分析问题和解决问题的能力。

本单元特点:本单元重视问题情境的设置,采用了问题情境---建立模型---求解、应用和拓展的内容呈现模式并逐步渗透方程思想、建模思想,发展数感和符号感,提高分析问题和解决问题的能力。

教材设计(课题组成)。

本单元教学目标:

知识和技能:

1.了解方程和方程的解、一元一次方程及其相关概念;会解一元一次方程;掌握解一元一次方程的步骤。

2.了解等式的基本性质及其在方程中的作用。

过程和方法:会根据具体问题中的数量关系列出一元一次方程并求解,能根据具体问题的实际意义检验结果是否合理。情感态度、价值观:

1.在经历建立方程模型解决实际问题的过程中,体方程思想、建模思想,并体会方程的应用价值。通过学习培养自己学习数学的兴趣和信心。

2.提高学习能力,增强和他人合作的意识。

本单元重点、难点:重点是根据具体问题中的数量关系列出一元一次方程;解一元一次方程的步骤;运用一元一次方程解决实际问题。难点是根据题意找出等量关系,列出一元一次方程解应用题。

教学关键:等式的基本性质;根据实际问题中的数量关系正确的列出代数式;根据实际问题中的等量关系正确列出等式。

数学一元一次方程教学设计【第五篇】

(1)读题分析法:…………多用于“和,差,倍,分问题”

仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套-----”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.

(2)画图分析法:…………多用于“行程问题”

利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础.

数学一元一次方程教学设计【第六篇】

1.知道解一元一次方程的去分母步骤,并能熟练地解一元一次方程。

2.通过讨论、探索解一元一次方程的一般步骤和容易产生的问题,培养学生观察、归纳和概括能力。

二、重点:解一元一次方程中去分母的方法;培养学生自己发现问题、解决问题的能力。

难点:去分母法则的正确运用。

三、学习过程:(一)、复习导入1、解方程:(1);(2)2(x-2)-(4x-1)=3(1-x)。

像这样在方程两边同时乘以,去掉分数的分母的变形过程叫做。依据是(三)例题:例1解方程:解:去分母,得依据去括号,得依据移项,得依据合并同类项,得依据系数化为1,得依据注意:1)、分数线具有2)、不含分母的项也要乘以(即不要漏乘)。

练一练:见p101练习解下列方程:(1)(2)。

(3)思考:如何求方程。

小明的解法:解:去百分号,得同学看看有没有异议?

四、小结:谈谈这节课有什么收获以及解带有分母的一元一次方程要注意的一些问题。五、课堂检测:

(4)=+1(5)。

六、作业p102:3,10.

数学一元一次方程教学设计【第七篇】

知识与技能:理解有关概念:方程,一元一次方程,方程的解,体会用方程来表示数量关系的优越性。

过程与方法:能将实际问题抽象为数学问题,并会找相等关系来列方程。

情感与态度:增强应用数学的意识,激发学习数学的热情。

教学重点:从实际问题中寻找相等关系。

教学难点:从实际问题中寻找相等关系。

数学一元一次方程教学设计【第八篇】

2、掌握等式的性质,理解掌握移项法则。

3、会用等式的性质解一元一次昂成(数字系数),掌握解一元一次方程的基本方法。

5、初步学会用方程的思想思考问题和解决问题的一些基本方法,学会用数学的方法观察、分析、归纳和总结现实情境中的实际问题。

难点重点:解方程、用方程解决实际问题。

难点:用方程解决实际问题。

师生活动时间复备标注。

二、典例回顾。

(1)。x=5(2)。x2+3x=2(3)。2x+3y=5。

判断下列x值是否为方程3x-5=6x+4的解。

(1)。x=3(2)x=3。

4、解决问题的基本步骤。

解:设先安排x人工作4小时。根据两段工作量之和应是总工作量,由此,列方程:

去分母,得4x+8(x+2)=40。

去括号,得4x+8x+16=40。

移项及合并,得12x=24。

系数化为1,得x=2。

答:应先安排2名工人工作4小时。

注意:工作量=人均效率人数时间。

本题的关键是要人均效率与人数和时间之间的数量关系。

三、基础训练:课本第113页第题。

四、综合训练:课本113页至114页。

五、达标训练:。

六、课堂小结:收获了哪些?还有哪些需要再学习?

课件出示问题明确知识要点。

学生练习基础上,教师点拨。

70 2276638
");