学习数学心得体会范文优秀5篇

网友 分享 时间:

【导言】此例“学习数学心得体会范文优秀5篇”的公文资料由阿拉题库网友为您分享整理,以供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载支持吧!

初中数学知识点总结【第一篇】

相交线与平行线

(1)相交线

在同一平面内,两条直线的位置关系有相交和平行两种。如果两条直线只有一个公共点时,称这两条直线相交。

(2)垂线

当两条直线相交所成的四个角中,有一个角是直角时,即两条直线互相垂直,其中一条直线叫做另一直线的垂线,交点叫垂足。

(3)同位角

两条直线a,b被第三条直线c所截(或说a,b相交c),在截线c的同旁,被截两直线a,b的同一侧的角,我们把这样的两个角称为同位角。

(4)内错角

两条直线被第三条直线所截,两个角分别在截线的两侧,且夹在两条被截直线之间,具有这样位置关系的一对角叫做内错角。

(5)同旁内角

两条直线被第三条直线所截,在截线同旁,且在被截线之内的两角,叫做同旁内角。

(6)平行线

几何中,在同一平面内,永不相交(也永不重合)的两条直线叫做平行线。

平行线的性质:①两直线平行,同位角相等;②两直线平行,内错角相等;③两直线平行,同旁内角互补。

(7)平移

平移,是指在同一平面内,将一个图形上的所有点都按照某个直线方向做相同距离的移动,这样的图形运动叫做图形的平移运动,简称平移。

数学知识点【第二篇】

数轴特点:一般地,设a是一个正数,则数轴上表示数a的点在原点的右边,与原点的距离是a个单位长度;表示数-a的点在原点的左边,与原点的距离是a个单位长度。

数轴上点与有理数关系:每一个有理数都可以用数轴上的一个点来表示;

但数轴上的点不都表示有理数。

注意:不能出现相同长度表示的不等的量。数轴两端不能画点。

数学学习心得体会【第三篇】

一、主动才能得到收获

“师者,所以传道受业解惑也”,我们要有“道”可传,有“业”可授,时能解“惑”,就必须不断学习,不断充实完善自己,而研修就是非常好的途径。国培给了我们这么好的一个平台,我们没有理由不好好利用。唯有主动才能抢占先机,唯有主动才能取得丰硕的研修成果。这种主动包括主动学习课程视频和文本资料,主动参与在线研讨、班级研讨,主动学习、收集、整理平台上每日发表上传的好资料,同时主动做出自己的评价,在这一过程中还要主动接受专家的引领,主动与同行交流等等。

二、交流才能常进步

关起门来用心钻研是必要的,但不能永远关起门来搞建设,我们要尝试走出去引进来,这种走出去引进来就是交流的过程。交流是我们学习成长的催化剂,很多平时百思不得其解的问题,可能因为对方的一句点拨就有如醍醐灌顶,豁然开朗。肖伯纳说,倘若你有一种思想,我也有一种思想,而朋友之间相互交流思想,那么,我们每个人就有两种思想了。但我觉得我们很可能不单单因为交流有了两种思想,我们非常有可能在交流的过程中产生多种思想,所以这远非一个“一换一”、“一换二”的交流,而是“一换多”的交流。所以,交流非常有必要。

在研修中这种交流就包括很多种,比如你读文本资料,从文本资料中获得知识和思想,你将写出的文章发表出去,别人读你的文章而与你的思想交流有了他自己的收获;又比如我们给别人评论,会吸引来作者或其他学员回复,然后再回复下去,或者参与班级研讨和在线研讨,这种交流就是一种非常及时的交流;甚至我们还可能由此而结交些许好友,大家相约着面对面交流。总之,交流让我们们学到更多的知识,让我们收获更多的思想,也让我们结交更多志同道合的好友。当然,在主动学习和主动交流之后我们还要学会主动反思和总结,这个过程也是非常重要的。

三、课程标准是统帅

我认为对课标的正确落实源于对课标的准确理解。但反观现状,我们对课标在教学中本应有的地位已经忽视很久了。对课标的重视不够,首先体现在驻守在教学第一线的我们身上,我们很多老师已经很久没有(甚至从来没有)认认真真看过课标了,更遑论研究解读课标。很多老师平时教学往往就看两本书:教材、教参;新老师可能再加几本优秀教案之类的书;熟悉教材的老教师可能连教参都不翻了。其次,正如吴老师文中所言,课改刚开始的时候,很多专家对“课标”做过许多的解读,但是进入到操作(教学实践)层面或环节时,可能很快就脱钩了。课标的实施出现了专家解读热后的断层器和真空期。其实大家都知道,课程标准体系严密、内容丰富,是我们教学设计对照的标杆、教学评价依托的依据。我们所使用的不同版本的教材的编制都是源于课标的,课标才是最高统帅,但我们在平时的教学中,往往局限于教材和教参,甚至对教参中“对应的课程标准”也不大在意,只有在做说课评比、优质课准备等比较“重要”的事时才想起翻翻课程标准对这一课是怎么要求的。

四、吃透教材

我认真学习拷贝的视频和文本资料,张开思维的触角,学人所长,取其精华的同时我也在对比思考,在对比中,我发觉我对教材体系的理解和掌握是如此的肤浅,这也是我们年轻老师往往薄弱的地方,但是没通过对比,自己往往没有这么强烈的感觉。我觉得如果对《数学生活》不熟悉的话,参加这样的研修就会困难重重,难以取得非常好的效果。这就好比去听一堂自己根本没有看过、没有备过、没有讲过的课,效果肯定不会太好。所以在研修的第二天,我就开始给自己多安排了一项任务:回归教材,认真研读。通过认真研读,再将自己对教材的理解和掌握与研修结合起来,惟其如此,才能收到更好的效果。后来的学习也证明我的这个反思是对的。

所以,在沉浸于研修资料何活动的过程中,我们不能忘了教材,教材是我们教学研究的一块主阵地,这块阵地要守住,还要守好,研究它,吃透它。

五、研修收获

近两个月的在线培训,专家们的讲座以及优秀课例和视频,使我们得以从理论的高度了解本次培训的必要性和重要性,同时也得以从感性上了解新课程理念下的课堂教学,从而得以重新认真地反省与审视自己的教育教学观和教学策略和方法。

1、通过对专家视频的观看,学习文字材料,老师们进一步了解了新课改的思路和做法,对教学中的各个环节有了深层次的把握,明晰了在新的形势下作为一名初中数学教师应该如何做才能符合课改的精神和时代的要求。

2、通过写作业,读评论,很好的锻炼了教学设计能力,加上指导教师和同班老师的点拨,很多地方豁然开朗,对教学的感悟又上了一个新台阶,那些真诚中肯的评价使培训教师进一步增进了对自己教学上的了解,促使我们进步。

3、通过学习其他老师的作业,收益良多。培训期间,网上涌现了大量优秀教师的优秀作业,通过指导教师和省专家的推荐以及自己的浏览,我们学习到了了若干闪着智慧光芒不乏个性的文章和作业,这些都是各位老师多年教学智慧的结晶。这些作品极大地开阔了我们的视野,丰富了我们的教学体验,使我们对自己过去教学上的想法和做法进行了反思。我们在研修中知识得到提升,思想得到升华,头脑得到充实。

数学知识点【第四篇】

高考数学知识点:轨迹方程的求解

符合一定条件的动点所形成的图形,或者说,符合一定条件的点的全体所组成的集合,叫做满足该条件的点的轨迹。

轨迹,包含两个方面的问题:凡在轨迹上的点都符合给定的条件,这叫做轨迹的纯粹性(也叫做必要性);凡不在轨迹上的点都不符合给定的条件,也就是符合给定条件的点必在轨迹上,这叫做轨迹的完备性(也叫做充分性).

轨迹方程就是与几何轨迹对应的代数描述。

一、求动点的轨迹方程的基本步骤

⒈建立适当的坐标系,设出动点M的坐标;

⒉写出点M的集合;

⒊列出方程=0;

⒋化简方程为最简形式;

⒌检验。

二、求动点的轨迹方程的常用方法:求轨迹方程的方法有多种,常用的有直译法、定义法、相关点法、参数法和交轨法等。

⒈直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直译法。

⒉定义法:如果能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。

⒊相关点法:用动点Q的坐标x,y表示相关点P的坐标x0、y0,然后代入点P的坐标(x0,y0)所满足的曲线方程,整理化简便得到动点Q轨迹方程,这种求轨迹方程的方法叫做相关点法。

⒋参数法:当动点坐标x、y之间的直接关系难以找到时,往往先寻找x、y与某一变数t的关系,得再消去参变数t,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做参数法。

⒌交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。

直译法:求动点轨迹方程的一般步骤

①建系——建立适当的坐标系;

②设点——设轨迹上的任一点P(x,y);

③列式——列出动点p所满足的关系式;

④代换——依条件的特点,选用距离公式、斜率公式等将其转化为关于X,Y的方程式,并化简;

⑤证明——证明所求方程即为符合条件的动点轨迹方程。

高考数学知识点:三角函数

三角函数。注意归一公式、诱导公式的正确性

数列题。1.证明一个数列是等差(等比)数列时,最后下结论时要写上以谁为首项,谁为公差(公比)的等差(等比)数列;2.最后一问证明不等式成立时,如果一端是常数,另一端是含有n的式子时,一般考虑用放缩法;如果两端都是含n的式子,一般考虑数学归纳法(用数学归纳法时,当n=k+1时,一定利用上n=k时的假设,否则不正确。利用上假设后,如何把当前的式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。简洁的方法是,用当前的式子减去目标式子,看符号,得到目标式子,下结论时一定写上综上:由①②得证;3.证明不等式时,有时构造函数,利用函数单调性很简单

立体几何题1.证明线面位置关系,一般不需要去建系,更简单;2.求异面直线所成的角、线面角、二面角、存在性问题、几何体的高、表面积、体积等问题时,要建系;3.注意向量所成的角的余弦值(范围)与所求角的余弦值(范围)的关系。

概率问题。1.搞清随机试验包含的所有基本事件和所求事件包含的基本事件的个数;2.搞清是什么概率模型,套用哪个公式;3.记准均值、方差、标准差公式;4.求概率时,正难则反(根据p1+p2+...+pn=1);5.注意计数时利用列举、树图等基本方法;6.注意放回抽样,不放回抽样;

高考数学知识点:数列

数列是高中数学的重要内容,又是学习高等数学的基础。高考对本章的考查比较全面,等差数列,等比数列的考查每年都不会遗漏。有关数列的试题经常是综合题,经常把数列知识和指数函数、对数函数和不等式的知识综合起来,试题也常把等差数列、等比数列,求极限和数学归纳法综合在一起。

探索性问题是高考的热点,常在数列解答题中出现。本章中还蕴含着丰富的数学思想,在主观题中着重考查函数与方程、转化与化归、分类讨论等重要思想,以及配方法、换元法、待定系数法等基本数学方法。

近几年来,高考关于数列方面的命题主要有以下三个方面;

(1)数列本身的有关知识,其中有等差数列与等比数列的概念、性质、通项公式及求和公式。

(2)数列与其它知识的结合,其中有数列与函数、方程、不等式、三角、几何的结合。

(3)数列的应用问题,其中主要是以增长率问题为主。试题的难度有三个层次,小题大都以基础题为主,解答题大都以基础题和中档题为主,只有个别地方用数列与几何的综合与函数、不等式的综合作为最后一题难度较大。

1.在掌握等差数列、等比数列的定义、性质、通项公式、前n项和公式的基础上,系统掌握解等差数列与等比数列综合题的规律,深化数学思想方法在解题实践中的指导作用,灵活地运用数列知识和方法解决数学和实际生活中的有关问题;

2.在解决综合题和探索性问题实践中加深对基础知识、基本技能和基本数学思想方法的认识,沟通各类知识的联系,形成更完整的知识网络,提高分析问题和解决问题的能力,

进一步培养学生阅读理解和创新能力,综合运用数学思想方法分析问题与解决问题的能力。

高考数学知识点:棱柱的性质

①棱柱的各个侧面都是平行四边形,所有的侧棱都相等,直棱柱的各个侧面都是矩形,正棱柱的各个侧面都是全等的矩形;

②与底面平行的截面是与底面对应边互相平行的全等多边形;

③过棱柱不相邻的两条侧棱的截面都是平行四边形。

棱柱:

有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱。两个互相平行的平面叫做棱柱的底面,其余各面叫做棱柱的侧面。两个侧面的公共边叫做棱柱的侧棱。侧面与底的公共顶点叫做棱柱的顶点,不在同一个面上的两个顶点的连线叫做棱柱的对角线,两个底面的距离叫做棱柱的高

高考数学知识点:垂直

①在同一平面内,过一点有且只有一条直线与已知直线垂直。垂直一定会出现90°。

②连接直线外一点与直线上各点的所有线段中,垂线段最短。

简单说成:垂线段最短。

③点到直线的距离:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。

两条直线相交成直角时,这两条直线互相垂直,其中一条直线是另一条直线的垂线,这两条直线的交点叫垂足。——《义务教育课程标准实验教科书数学四年级(上册)》

两条直线相交成四个角,如果有一个角是直角,那么称这两条直线互相垂直,其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足。——《义务教育课程实验教科书上海版数学四年级下册》(20xx年审定新版)

两条直线成直角,那么这两条直线互相垂直。

数学知识【第五篇】

说起数学的作用,我们说上一天一夜也说不完,没有数学,我们生活也很不方便。那么,你知道数学除了日常生活中的简单运算,还可以做什么?能像警察那样破案吗?可以的,不信看看侠盗亚森罗宾是怎样用数学破案的。

巴黎郊外有一座中世纪留下的古老城堡,其年代几乎与著名的“巴黎圣母院”同样久远,因而成了旅游观光的胜地,吸引了来自世界各地的游客。下面这则故事就是出自—位导游之口。

古堡的顶层有一座尘封的钟楼,里面住着一个怪人,唯一的对外通道是个走起来嘎嘎响、陡峭异常的木质楼梯,大约有几十级,但肯定不到一百级。

某日黄昏,怪人的四位互不相识的朋友阿列克赛、巴顿、克林、杜邦,几乎在同一时间先后来访。他们发现怪人已经被人杀害了,房间里面看起来很恐怖。当下四人大惊失色,争先恐后地拼命逃走。从脏乱不堪的狭窄楼梯(一次只能通过一人)跑下来,阿列克赛一步下2级台阶,巴顿一步下3级台阶,克林一步下4级台阶,而杜邦的本事最大,竟然一步能下5级台阶。

出事以后,侠盗亚森罗宾乔装成一名体面上流社会绅士,自告奋勇地前来侦破此案。他发现,同时印下四个人脚印的台阶仅在最高处和最低处。

为追查凶手,脚印混乱了就不好办,于是亚森罗宾特别重视只留有一个人脚印的台阶。后来的结果充分证明他的看法是正确无误的,最后终于抓获凶手,把他绳之以法。

现在要问你的是,通向钟楼的木楼梯上有多少级台阶只印下了一个人(不管是谁的)的脚印?

答案:

由于4的倍数肯定是2的倍数,所以克林的情况可以不必考虑,这就省掉了一个人,2,3,4,5的最小公倍数是60,而60又小于100,所以钟楼的木楼梯共有60级台阶。

阿列克赛的脚印落在第2,4,6,8,10,12,…,58,60级台阶上,但应排除2×3及其倍数各级阶梯;同理,还需要排除4的倍数的各级阶梯和5的倍数各级阶梯。于是剩下第2,14,22,26,34,38,46,58共八级。其一般形式为2×p(其中p=1,以及除去2、3、5以外的素数)。

巴顿的脚印落在第3,6,9,12,…,60级阶梯上,但应排除混有别人脚印的第6,12,15,18,……级阶梯,剩下第3,9,2l,27,33,39,51,57,共八级。

前面已经说过克林的情况可以不考虑了,最后再来看一下杜邦情况。很明显,只留下他一个人脚印的阶梯是第5,25,35,55级,共四级。

所以,问题的答案是8+8+4=20级。

70 448319
");