学习数学心得体会范文优秀4篇
【路引】由阿拉题库网美丽的网友为您整理分享的“学习数学心得体会范文优秀4篇”文档资料,以供您学习参考之用,希望这篇范文对您有所帮助,喜欢就复制下载支持吧!
数学知识点【第一篇】
1、对于函数f(x),如果对于定义域内任意一个x,都有f(-x)=-f(x),那么f(x)为奇函数;
2、对于函数f(x),如果对于定义域内任意一个x,都有f(-x)=f(x),那么f(x)为偶函数;
3、一般地,对于函数y=f(x),定义域内每一个自变量x,都有f(a+x)=2b-f(a-x),则y=f(x)的图象关于点(a,b)成中心对称;
4、一般地,对于函数y=f(x),定义域内每一个自变量x都有f(a+x)=f(a-x),则它的图象关于x=a成轴对称。
5、函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;
6、由函数奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,则-x也一定是定义域内的一个自变量(即定义域关于原点对称)。
一、充分条件和必要条件
当命题“若A则B”为真时,A称为B的充分条件,B称为A的必要条件。
二、充分条件、必要条件的常用判断法
1、定义法:判断B是A的条件,实际上就是判断B=>A或者A=>B是否成立,只要把题目中所给的条件按逻辑关系画出箭头示意图,再利用定义判断即可
2、转换法:当所给命题的充要条件不易判断时,可对命题进行等价装换,例如改用其逆否命题进行判断。
3、集合法
在命题的条件和结论间的关系判断有困难时,可从集合的角度考虑,记条件p、q对应的集合分别为A、B,则:
三、知识扩展
1、四种命题反映出命题之间的内在联系,要注意结合实际问题,理解其关系(尤其是两种等价关系)的产生过程,关于逆命题、否命题与逆否命题,也可以叙述为:
(1)交换命题的条件和结论,所得的新命题就是原来命题的逆命题;
(2)同时否定命题的条件和结论,所得的新命题就是原来的否命题;
(3)交换命题的条件和结论,并且同时否定,所得的新命题就是原命题的逆否命题。
2、由于“充分条件与必要条件”是四种命题的关系的深化,他们之间存在这密切的联系,故在判断命题的条件的充要性时,可考虑“正难则反”的原则,即在正面判断较难时,可转化为应用该命题的逆否命题进行判断。
一个结论成立的充分条件可以不止一个,必要条件也可以不止一个。
高考数学知识点
第一、高考数学中有函数、数列、三角函数、平面向量、不等式、立体几何等九大章节。
主要是考函数和导数,这是我们整个高中阶段里最核心的板块,在这个板块里,重点考察两个方面:第一个函数的性质,包括函数的单调性、奇偶性;第二是函数的解答题,重点考察的是二次函数和高次函数,分函数和它的一些分布问题,但是这个分布重点还包含两个分析就是二次方程的分布的问题,这是第一个板块。
第二、平面向量和三角函数。
重点考察三个方面:一个是划减与求值,第一,重点掌握公式,重点掌握五组基本公式。第二,是三角函数的图像和性质,这里重点掌握正弦函数和余弦函数的性质,第三,正弦定理和余弦定理来解三角形。难度比较小。
第三、数列。
数列这个板块,重点考两个方面:一个通项;一个是求和。
第四、空间向量和立体几何,在里面重点考察两个方面:一个是证明;一个是计算。
第五、概率和统计。
这一板块主要是属于数学应用问题的范畴,当然应该掌握下面几个方面,第一……等可能的概率,第二………事件,第三是独立事件,还有独立重复事件发生的概率。
第六、解析几何。
这是我们比较头疼的问题,是整个试卷里难度比较大,计算量的题,当然这一类题,我总结下面五类常考的题型,包括:
第一类所讲的直线和曲线的位置关系,这是考试最多的内容。考生应该掌握它的通法;
第二类我们所讲的动点问题;
第三类是弦长问题;
第四类是对称问题,这也是2008年高考已经考过的一点;
第五类重点问题,这类题时往往觉得有思路,但是没有答案,
当然这里我相等的是,这道题尽管计算量很大,但是造成计算量大的原因,往往有这个原因,我们所选方法不是很恰当,因此,在这一章里我们要掌握比较好的算法,来提高我们做题的准确度,这是我们所讲的第六大板块。
第七、押轴题。
考生在备考复习时,应该重点不等式计算的方法,虽然说难度比较大,我建议考生,采取分部得分整个试卷不要留空白。这是高考所考的七大板块核心的考点。
高考数学复习重点总结
第一,高考数学中有函数、数列、三角函数、平面向量、不等式、立体几何等九大章节
主要是考函数和导数,这是我们整个高中阶段里最核心的板块,在这个板块里,重点考察两个方面:第一个函数的性质,包括函数的单调性、奇偶性;第二是函数的解答题,重点考察的是二次函数和高次函数,分函数和它的一些分布问题,但是这个分布重点还包含两个分析就是二次方程的分布的问题,这是第一个板块。
第二,平面向量和三角函数
重点考察三个方面:一个是划减与求值,第一,重点掌握公式,重点掌握五组基本公式。第二,是三角函数的图像和性质,这里重点掌握正弦函数和余弦函数的性质,第三,正弦定理和余弦定理来解三角形。难度比较小。
第三,数列
数列这个板块,重点考两个方面:一个通项;一个是求和。
第四,空间向量和立体几何
在里面重点考察两个方面:一个是证明;一个是计算。
第五,概率和统计
这一板块主要是属于数学应用问题的范畴,当然应该掌握下面几个方面,第一……等可能的概率,第二………事件,第三是独立事件,还有独立重复事件发生的概率。
第六,解析几何
这是我们比较头疼的问题,是整个试卷里难度比较大,计算量的题,当然这一类题,我总结下面五类常考的题型,包括第一类所讲的直线和曲线的位置关系,这是考试最多的内容。考生应该掌握它的通法,第二类我们所讲的动点问题,第三类是弦长问题,第四类是对称问题,这也是2008年高考已经考过的一点,第五类重点问题,这类题时往往觉得有思路,但是没有答案,当然这里我相等的是,这道题尽管计算量很大,但是造成计算量大的原因,往往有这个原因,我们所选方法不是很恰当,因此,在这一章里我们要掌握比较好的算法,来提高我们做题的准确度,这是我们所讲的第六大板块。
第七,押轴题
考生在备考复习时,应该重点不等式计算的方法,虽然说难度比较大,我建议考生,采取分部得分整个试卷不要留空白。这是高考所考的七大板块核心的考点。
数学学习方法【第二篇】
六年级数学学习方法:
进入小学高年级后,科目稍微增加、内容拓宽、知识深化……学生认知结构发生根本变化,许多同学容易忽略老师所讲的数学思想、数学方法,而注重题目的解答,其实诸如“化归”、“数形结合”等思想方法远远重要于某道题目的解答。总结比较,理清思绪
知识点的总结比较。每学完一章都应将本章内容做一个框架图或在脑中过一遍,整理出它们的关系。对于相似易混淆的知识点应分项归纳比较,有时可用联想法将其区分开。题目的总结比较。同学们可以建立自己的题库。
在学习《位置》在用数对确定点的位置,这部分渗透了数形结合的思想,和一一对应的思想。学生可在方格纸上画画。
学习分数乘法的意义:1、分数乘整数是求几个相同加数的和的简便运算,与整数乘法的意义相同。2、分数乘分数是求一个数的几分之几是多少。
例:一小时刷一面墙的1/4,1/5小时刷一面墙的多少?实际上是求1/5的1/4是多少?
这种题型可以利用数形结合的数学思想,画一画,折一折。再就是利用:工作效率*工作时间=工作总量
在学习分数除法这一节时,例如:分数、除法和小数之间的关系和区别,以及分数除法应用题无论是折纸实验,还是画线段图,都是用图形语言揭示分数除法计算过程的几何意义。分数乘除法,比的知识,运用了类比的数学。(相似和变式)
在学习圆这一节时,用逐渐逼近的转化思想。把一个园等分(偶数份)成的。份数越多,拼成的图像越接近长方形。体现化圆为方,化曲为直的思想,应用转化思想。在应用中,我们还知道面积相同时,长方形的周长最长,正方形居中,圆周长最短。周长一定时,圆面积最大,正方形居中,长方形面积最小。这题蕴含着一个数学规律,即在面积相等的情况下,圆的周长最短,而长方形的周长最长;反之,在周长相等的情况下,圆的面积最大,而长方形的面积则最小。
在学习数学广角这一章节中,例如,研究古代鸡兔同笼的问题,就应用了假设法来教学。这种思维方式就是划归法。
六年级数学大纲:
(一)数与计算
(1)分数的乘法和除法。分数乘法的意义。分数乘法。乘法的运算定律推广到分数。倒数。分数除法的意义。分数除法。
(2)分数四则混合运算。分数四则混合运算。
(3)百分数。百分数的意义和写法。百分数和分数、小数的互化。
(二)比和比例
比的意义和性质。比例的意义和基本性质。解比例。成正比例的量和成反比例的量。
(三)几何初步知识
圆的认识。圆周率。画圆。圆的周长和面积。*扇形的认识。轴对称图形的初步认识。圆柱的认识。圆柱的表面积和体积。圆锥的认识。圆锥的体积。球和球的半径、直径的初步认识。
(四)统计初步知识
统计表。条形统计图,折线统计图,*扇形统计图。
(五)应用题
分数四则应用题(包括工程问题)。百分数的实际应用(包括发芽率、合格率、利率、税率等的计算)。比例尺。按比例分配。
(六)实践活动
联系学生所接触到的社会情况组织活动。例如就家中的卧室,画一个平面图。
(七)整理和复习
如何才能学好数学【第三篇】
数学其实不简单,要想学好数学确实要费一番心思,但是数学真学进去了会感觉很有意思,根本没那么困扰大家。数学知识点很多很杂,只有踏踏实实一步一个脚印才能把数学学好。另外,学好数学不是一朝一夕的事,大家要有持久的耐力,最好有动力,做好打持久战的准备。
在数学学习上,首先要告诉大家,不是教出来的,是悟出来的,是自学出来的。不是看会的,是算会的。具体来说,数学光靠老师上课讲的那些东西是学不会的,也就是所谓的看花容易绣花难,只有经过自己的亲身实践才能知道自己到底会不会,摆脱其他人的思路,自己做出来的东西才不容易忘记。
在学习数学时,最简单有效的方法就是多做题,通过做题来巩固所学的知识,把公式记得更扎实牢固一些。同时,还有一个工序就是课前预习,大家也不要小瞧了这个过程,因为预习也是一个自学的过程,这最能锻炼同学们的思维能力以及独立解题能力,这一步做好了数学成绩能有一个很大提升和进步。
数学学习方法【第四篇】
1.提前预习
提前预习能够对老师上课所讲的内容有大体上的了解和把握,能够在听课的时候抓住重点,着重听取自己不会的重难点。但高数书比较晦涩难懂,如果仅仅是靠自学,往往很难看下去也比较难学进去,所以把握课堂很重要,上课需要跟着老师的节奏走。
2.认真听课
大学固定教室的概念较弱,所以上课的地点和座位都是流动的,上课基本在比较大的阶梯教室进行。教室空间比较大,建议大家坐得靠前一些,这能更加清晰地听见老师的讲课,方便和老师进行互动,同时也能使自己集中注意力,避免因分神而错过知识点。
3.及时复习
高数很多知识都是连在一起的,需要我们经常把学过的知识复习、总结,这样才能融会贯通。当然,有些学生对复习没有足够的耐心,但也得坚持每天复习前一堂课所学的内容。复习也得专心,一定要质量高、效率高、不拖拉。
4.融会贯通
高数的知识是一层层推进的,后一章知识与前一章紧密相连,这就需要同学们稳扎稳打,一步一步地学习,掌握重点知识,千万不能为了赶进度而囫囵吞枣般学习,这样不仅不能串联知识,还会打乱学习节奏,增加学习难度。
上一篇:幸福感心得体会范文(最新4篇)