圆的面积试讲课稿范例(通用4篇)

网友 分享 时间:

【写作参考】阿拉题库漂亮网友为您精选的“圆的面积试讲课稿范例(通用4篇)”文档资料,供您写作参考阅读之用,希望对您有所帮助,喜欢就复制下载吧!

圆的面积试讲稿【第一篇】

尊敬的各位领导老师:

大家好!

今天我说课的内容是全日制小学数学课本第十一册第一单元"圆的面积"。

一、说教材

教材分析

圆是小学阶段的最后的一个平面图形,通过对圆的研究,使学生认识到研究曲线图形的基本方法,同时渗透了曲线图形与直线图形的关系。圆的面积是在学生认识了圆的特征,掌握了圆的周长的计算,以及学过了直线图形的面积计算方法的基础上进行教学的。通过对圆的面积有关知识学习,不仅加深学生对周围事物的理解,也为以后学习圆柱,圆锥和绘制简单的扇形统计图打下基础。

学情分析

学生从认识直线图形发展到认识曲线图形,是一次飞跃,但从学生思维特点的角度看,六年级学生以抽象思维为主,具有一定的逻辑思维能力,这一学段中的学生已经有了许多机会接触到数与计算、空间图形等较丰富的数学内容,已经具备了初步的归纳、类比和推理的数学活动经验,并具有了转化数学思想的能力。所以,圆的面积公式的推导过程以及圆的面积公式的应用是本节课的重点,在圆的面积公式推导过程中,对“化曲为直”、“化圆为方”,的理解是本节课的难点。

教学目标分析

在素质教育背景下的数学教学应以学生发展为本,培养能力为重,同时也要强化应用意识,所以根据本节课的特点确定如下教学目标。

知识与技能——使学生理解和掌握圆的面积的计算公式,沟通圆与其它图形之间的联系,培养学生观察、操作、分析、概括的能力以及逻辑推理能力,培养学生灵活运用公式解决实际问题的能力。

过程与方法——引导学生学会利用已有的知识,运用数学思想方法,推导出圆面积计算公式;渗透极限、转化、以直代曲等数学思想方法,发展学生的空间观念。

情感态度价值观——培养学生认真观察、深入思考的良好思维品质,锻炼学生面对困难勇于克服、锲而不舍的精神。

二、说教法

针对六年级学生年龄特点和心理特征,以及他们现在的知识水平。采用启发式,小组合作等教学方法,让尽可能多的学生主动参与到学习过程中。课堂上教师要成为学生的学习伙伴,与学生“同甘共苦”一起体验成功的喜悦,创造一个轻松,高效的学习氛围。

为了更好地展示数学的魅力,结合一定的多媒体辅助手段,充分调动学生的感官,增加形象感与趣味性,腾出足够的时空和自由度使学生成为课堂的主人。

三、说学法

通过实例引入,引导学生关注身边的数学,在借助长方形面积公式来推导圆的面积公式的同时,使学生体会到观察,归纳,联想,转化等数学学习方法,在师生互动中让每个学生都动口,动手,动脑。培养学生学习的主动性、积极性,以及良好的学习习惯的养成。

四、说教学过程

基于以上认识,为了有效的突出重点,突破难点,顺利的实现教学目标,我设计了以下五个教学环节:

第一环节创设情景,引入课题

出示课件“在一片绿草地上,一匹小马被它的主人用一根长2米的绳子栓在一棵小树上,它的主人想考考我们”从而激发学生的学习兴趣,同时并对圆的周长进行复习,引入新课。使学生对所学的内容产生内在的需要和好奇心,怀着这份强烈的求知欲望走进学习新知识的课堂。

第二环节转化思想,推导公式

通过回忆平行四边形、三角形和梯形面积计算公式的推导过程,并分析,对比各个公式推导过程的共同点就是将要学的图形转化为已学过的图形,接着帮助和指导学生动手操作,通过分一分、剪一剪、想一想、议一议来认识圆面积的推导过程。既充分利用教材,又让学生学会自主探究,培养了学生的自学能力,充分体现学生的自主性。

教师先将将圆平均分成4份,进行拼图,目的是教给学生由圆转化为近似长方形的方法,并初步感知圆的形状变了,但面积并没有变。再让学生亲自动手将圆平均分成8、16、32等份拼图,使学生进一步感知拼成的图形更接近于长方形。此时,经过学生的空间想象,他们在大脑中已经形成了由圆转化成长方形的图像,这时显示将圆等分的过程及拼成的长方形的图像,会使学生在视觉上得到证实,他们的.思维结果是正确的:将圆平均分成的份数越多,拼成的图形越接近长方形,但面积始终是不变的。运用教具显示由圆到近似长方形的图像的变换过程,揭示出数学知识的内在规律的科学美,并充分体现构图美和动态美的特点,它能刺激学生,强化学生的好奇心,提高学生探求知识奥秘的欲望,有助于解除学生视听疲劳,提高学习效率。教具的辅助教学促进学生良好思维品质的形成,达到了预想的教学目的。

第三个环节:运用公式,解决问题。

完成例1、例2,要求学生运用公式正确计算,注意书写格式和运算顺序。两道例题由浅入深,由数学到生活,由具体到抽象的设计,充分利用学生已有的生活经验引导学生把所学的数学知识用到现实中去,去体会数学在现实生活中的应用价值。

第四个环节:活用新知,扎实练习。

对于巩固练习,遵循由浅入深、由易到难、循序渐进的原则设计,意在让学生在理解概念的基础上,正确地掌握公式,并能运用知识解决实际的问题。第一层次的练习是以文字题的形式给出半径和直径求圆的面积。第二层次的练习是通过认真分析判断正误。这一组知识运用练习体现了一定的密度和梯度,重在培养学生的学习习惯,巩固所学知识,提高学生解决圆的面积的问题必须先知道圆的半径,再求圆的面积。

第五个环节全课总结

让学生回忆一下圆的面积公式是怎样推导出来的?要求圆的面积,需要知道什么条件?通过对全课的回顾总结,加深对知识的理解,同时也培养了学生的概括能力,使学生的思维能力得到进一步的提高。

第六个环节实践运用,拓展练习

出示一张光盘,这张光盘由内、外两个圆构成。光盘的银色部分是一个圆环。请同学们用想到的方法算一算这个圆环的面积,将所学知识运用到实际生活中,从而培养学生应用数学的意识和综合运用知识解决问题的能力。

五、教学效果预测

圆的面积一节的教学设计坚持以“促进学生主动发展”的理念为指导,以发展学生的概括抽象能力、培养学生良好的数学思维为核心,以独立思考、合作交流为主线,着力引导学生在自主探究中去推导、应用圆的面积公式。努力促进学生知识与技能,过程与方法、情感与态度的和谐发展,预计会受到良好的教学效果,说课中有不当之处,请各位领导老师批评指正。

圆的面积试讲稿【第二篇】

说内容:

我备课的内容是小学数学六年级上册第四单元第三节《圆的面积》。这部分内容是在初步认识圆,学习了圆的周长以及学过几种常见直线图形的基础上进行教学的。学生从学习直线图形的面积到学习曲线图形的面积,无论是内容本身,还是研究方法都是一次质的飞跃。学生掌握圆的面积计算方法是十分必要的,不仅能解决简单的实际问题,也为以后学习圆柱、圆锥的知识打下了基础。

说目标:

遵循教材的编写意图及课标要求,我确定本节的教学目标如下:

1、知识与技能:了解圆面积的含义,理解和掌握圆的面积计算公式,能正确计算圆的面积。

2、过程与方法:通过动手操作、自主探索、合作交流的学习方式,让学生经历圆的面积计算公式的推导过程,体会“化圆为方”的转化方法。

3、情感态度与价值观:培养学生运用转化思想解决问题的意识和能力。

教学重点:理解和掌握圆的面积的计算公式。

教学难点:理解圆的面积公式的推导过程。

说教学策略:

为了突出重点,突破难点,本节教学我将以活动探究为主,引领点播为辅,采用三个教学策略。

1、知识呈现生活化:结合圆形草坪的实际情境,引出本节要探究的问题,拉近数学知识与现实生活的距离,从而激发学生的探究。

2、学习过程活动化:引导学生在剪拼的操作活动中运用转化的思想“化曲为直,化圆为方”,将圆转化成已学过的平面图形,再通过观察、比较、分析等活动推导得出圆的面积计算公式。

3、学生学习自主化:学生在自主探究中,充分参与,才会明白转化的过程,才会理解圆的面积公式的推导过程,从而突破难点。

圆的面积试讲稿【第三篇】

说教法:

针对六年级的学生年龄特点和心理特征,以及他们现在的知识水平。采用启发式,小组合作等教学方法,让尽可能多的学生主动参与到学习过程中。课堂上教师要成为学生的学习伙伴,与学生一起体验成功的喜悦,创造一个轻松,高效的学习氛围。

说学法:

通过实例引入,引导学生关注身边的数学,在借助长方形面积公式来推导圆的面积公式的同时,使学生体会到观察,归纳,联想,转化等数学学习方法,在师生互动中让每个学生都动口,动手,动脑。培养学生学习的主动性和积极性。

为了更好地展示数学的魅力,结合一定的多媒体辅助手段,充分调动学生的感官,增加形象感与趣味性,腾出足够的时间和自由度使学生成为课堂的主人。

说教学过程:

(一)复习旧知,渗透转化

新课开始,我先让学生回忆已经学过的圆的认识、周长及长方形、平行四边形面积计算公式,以唤取学生对旧知识的回忆,为新知识的学习做好铺垫。

(二)创设情景,引出课题

出示“一只小狗被它的主人用一根长10米的绳子栓在草地上,问小狗能够活动的范围有多大?”的ppt课件。启发学生进行猜想,然后展开讨论同学们的方法是否可行,从而引出课题,讲授圆的面积的概念。融新知识于解决生活实际问题之中,这样做,目的就使学生在对新知识的渴望中产生探究的兴趣。

(三)、合作学习,探索新知

为了帮助学生开展探究活动,第一步,引导学生小组合作,通过剪拼图形推导出圆的面积的计算公式。学生进行四人小组活动后,我让各小组的代表展示自己剪拼的作品,根据学生出现的多种情况,我利用课件演示把一个圆平均分成8等份、16等份、32等份、64等份、128等份后,并拼成近似的长方形,这样设计让学生在视觉上得到证实:将圆平均分的份数越多,拼成的图形越接近长方形。当把圆平均分成无数份时,拼成的图形就成了长方形,即“化曲为直”。这样的设计给予了学生自主创新的机会,学生真正成为了探究活动的主体。

第二步,我让学生讨论:根据转化的图形如何推导出圆的面积计算公式?拼成的近似长方形的长相当于圆的什么?宽相当于圆的什么?学生通过观察讨论发现:在剪拼的过程中,图形的形状变了,但面积没变,拼成的近似长方形的面积等于圆的面积,近似长方形的长等于圆的周长的一半,宽等于圆的半径,因为长方形的面积等于长乘宽,所以圆的面积等于圆的周长的一半乘半径,从而推导出圆的面积计算的字母公式s=πr。

学生汇报探究结果之后,为了使学生更直观、更形象的理解“极限”的概念,我适时进行教具演示,引导学生观察:把圆平均分成八份、十六份、三十二份后,拼在一起,再观察每次拼成的图形中闪动的曲线与圆周长的关系。学生就会明白分的份数越多,拼成的图形越接近长方形,当分的份数足够多时,曲线就接近直线了。由于在剪和拼的过程中,图形的大小没有发生变化,也就是圆的面积等于这个拼成的近似长方形的面积。就这样,抽象难懂的“极限”的概念就在教具直观、形象的演示中初步理解了。

在这个环节中,把学生的动手操作和直观、形象的教具演示相结合,对突出重点、突破难点提供了有力的保证。

圆的面积试讲稿【第四篇】

尊敬的各位评委、教师:

大家好!

我是吉林市昌邑区桦皮厂镇中心小学的李强。我说课的题目是《圆的面积》。

一、教学分析

《圆的面积》选自人教版《义务教育新课程标准实验教科书》六年级上册第四单元第三节。它是在学生了解和掌握了圆的特征、学会计算圆的周长以及学习过直线平面图形的基础上进行教学的。也是今后进一步学习圆柱和圆锥等知识的基础。

根据《新课标》的要求和教材的特点,结合六年级学生已有的知识经验和学习经验,制定如下教学目标:

1、知识技能目标:正确运用圆面积的计算公式解决简单问题。

2、过程方法目标:经历圆面积计算公式的推导过程,在推导过程中体会转化的数学思想;初步感受极限思想。

3、情感态度目标:学生在探究过程中,主动与他人合作、交流,体验成功的乐趣,激发学习数学的兴趣。

教学重点:圆面积计算公式的推导。

教学难点:体会转化的数学思想,初步感受极限思想。

教具、学具准备:多媒体课件、圆片、剪刀,直尺、量角器等。

二、说教法学法

本课将“学生为主体,教师为主导,动手操作、自主探究、合作交流、体会数学思想为主线。”的理念贯穿教学的始终。教学时,针对整合点,充分利用多媒体课件动态、直观的演示,弥补动手操作和想象的不足,让学生直观感受知识的形成过程。从而突破重点和难点。

三、说教学过程{为了教学目标的有效达成,设计了如下的教学流程}

(一)创设情境,引入新课

数学来源于生活,创设现实的生活情境,“圆形草坪”情境图,一方面使学生了解圆的面积的含义,另一方面,使学生体会在实际生活中计算圆面积的必要性。

(二)动手操作,探索新知

1、初步探索,体会“转化”思想:

首先,设置问题情景,怎么求圆的面积呢?当学生束手无策时,帮助学生从头脑中搜索出已有的与解决这一问题相关的知识和方法-----转化思想。

然后,围绕“转化”教师和学生在小组内展开讨论、动手操作,合作交流,并逐步得出解决问题的思路。

接下来,引导学生说明两个组方法的共同点。为深入研究做铺垫。

2、深入研究,感受“极限”思想

学生研究时从直觉上觉得这样继续剪拼下去,得到的图形一定会越来越像平行四边形,但是随着平均分的份数越来越多,学生的动手操作变得很困难。

针对此整合点,充分利用多媒体课件直观动态的演示,弥补动手操作和想象的不足,展示把圆分成32份、64份拼成的图形越来越接近长方形。让学生真切地看到了“自己想像的过程”,建立了空间观察和空间想象力。再把拼成的图形进行对比,问:你们发现什么了?再继续分下去呢?使学生充分体验了极限思想。

3、深化思维、推导公式

这一环节,将常规教学手段和信息技术分段并用。使不同的学生在数学上得到不同的发展。

首先引导学生回忆把圆转化为长方形的过程,并发放示意图,学生借助数字、字母、符号等,运用数学的思维方式,推导圆面积的计算公式。然后针对有困难的小组,利用课件动态的演示,化静为动,化抽象为具体,使学生进一步加深对圆面积公式推导过程的理解。最后交流展示,归纳公式。

通过三个环节的教学,借助信息技术的优势,突出了重点,突破了难点。

(三)解决问题,检验巩固

本课主要教学目标是让学生经历圆面积计算公式的推导过程,体验转化和极限的数学思想,所以本节课只设计了两个基本练习,目的是巩固学生对圆面积计算的理解。

(四)回顾知识,体味思想

《新课程标准》指出,“数学的学习,不仅是数学知识的学习,更重要的是数学思想与方法的学习。课的最后我提问:“本节大家有什么收获?”这样不仅和学生回顾了本节课的数学知识,又重新体味了解决问题的数学思想。

四、教学效果

本节课,根据教学内容的特点、教学目标以及学生的认识水平以及学生不同的思维层次,将信息技术与数学学科进行有机的结合,培养了探索精神,渗透了数学思想,使不同的学生得到了不同的发展,有效地促进了教学目标的达成,提高了教学效率。

70 614494
");