小学数学概念教学: 理论与实践(8篇)
【参照】优秀的范文能大大的缩减您写作的时间,以下优秀范例“小学数学概念教学: 理论与实践(8篇)”由阿拉漂亮的网友为您精心收集分享,供您参考写作之用,希望下面内容对您有所帮助,喜欢就复制下载吧!
小学数学概念教学: 理论与实践【第一篇】
针对第一学段孩子的抽象思维能力较弱,对数学语言描述的概念理解较为困难,我们在教学中应该多用形象的描述,创设有趣的问题情境,打些合理的比方等,努力让孩子们理解所学概念,可以采用以下一些方式来进行教学。
夸张的手势,丰富的肢体语言,理解运算所蕴含的意义,区分概念的差别。在让一年级的孩子认识加减法的时候,我举起双手像音乐指挥家一样,左边一部分,右边一部分,两部分合在一起就用加号,加号就是横一部分,竖一部分组起来的,减法则反过来展示。孩子们看得有趣,记得形象,不但记住了加减号还明白了加减号的用法。在教二年级孩子感受厘米和米时,我让孩子们学会用手势来表示1厘米和1米,使得孩子们在估计具体物体的长度时有据可依。形象生动的讲解,让孩子们自然接受数学符号。教师的语言讲解也要力求符合学生实际,特别是第一次描述时,教师一定要斟字酌句地用孩子能理解的语言尽可能用数学语言简洁地描述。因为对于第一次接触新概念的孩子们来说,第一印象是最为深刻的。当然在适当的时候我们也可以选择让孩子们根据自己的理解来说一说来试着对概念进行解释,一方面同龄人的解释会让孩子们概念的理解更为容易;另一方面也可以锻炼一下孩子的数学语言表达能力。我们要记住:孩子们的数学概念应该是逐级递进、螺旋上升的(当然要避免不必要的重复),以符合学生的数学认知规律。很多时候第一学段的孩子对于部分数学概念,只要能意会不必强求定要学会言传。
二、概念的学习宜多感官参与。
心理学家皮亚杰指出:“活动是认识的基础,智慧从动作开始。”书上的数学概念是平面的,现实却是丰富多彩的,照本宣科,简单学习自然无法让这些数学概念成为孩子们数学知识的坚固基石。如果我们能够让孩子们的多种感官参与学习,让平面的书本知识变得多维、立体,让孩子们的感觉和思维同步,相信能取得很好的教学效果。
教学《认识钟表》时,鉴于时间是一个非常抽象的概念,时间单位具有抽象性,时间进率具有复杂性,所以在教学时我以学生已有生活经验为基础,帮助学生通过具体感知,调动孩子的多种感官参与学习,在积累感性认识的基础上,建立时间观念,安排了以下一些教学环节。1.动耳听故事,调动情感引入。讲了一个发生在孩子们身边的故事:豆豆由于不会看时间,结果错过了最爱看的动画片。2.动眼看钟面,听介绍,初步了解钟面,形成“时、分”概念。动画是孩子们的最爱,让钟表爷爷来介绍钟面、时针、分针,生动有趣的讲解,让孩子们的心立刻专注地进行于课堂上。3.动嘴说时间,喜好分明。4.动手拨时间。5.动脑画时间(此时在前几项练习的基础上增加了一定难度,如出示一些没有数字的钟面,只有12、3、6、9四点的钟面,让孩子们对时针、分针的位置进行估计)。
通过这些活动,使孩子们口、手、耳、脑并用,自主地钻入到数学知识的探究中去,让时间从孩子们的生活中伶伶俐俐地变成数学知识,形成了数学概念。同时也让学生充分展示自己的思维过程,展现自己的认识个性,从而使课堂始终处于一种轻松、活跃的状态。
另外,教师在教学的过程中也应该对所教概念的知识生长点,今后的发展(落脚点)有一个全面、系统的认识,才能使得所教概念不再那么单薄,变得厚重起来。孩子对概念的来龙去脉有一个更清晰完整的了解,理解起来也就变得轻松。
三、概念的练习宜生动有趣。
第一学段初期的孩子从心理状态上来说较难适应学校的教学生活,在学习中总是会感到疲劳乏味,碰到相对枯燥的概念教学时这种疲惫更是由内而外。德国教育家福禄培尔在其代表作《幼儿园》中认为,游戏活动是儿童活动的特点,游戏和语言是儿童生活的组成因素,通过各种游戏,组织各种有效的活动,儿童的内心活动和内心生活将会变为独立的、自主的外部自我表现,从而获得愉快、自由和满足。将游戏用于教学,将能使儿童由被动变为主动,积极地汲取知识。
游戏、活动是孩子们的最爱,让他们在游戏活动中获取知识,这样的知识必定是美好而快乐的。有了这样的感觉,孩子们学习数学的兴趣一定是浓厚的,我们再让数学的魅力适度展示,让他们感觉到学习数学不但是一件轻松、快乐的事更是一件有意义的事。我想他们继续进行探索、学习新知的动力就来自于此了。
四、概念的拓展宜实在有效。
美国实用主义哲学家、教育家杜威从他的“活动”理论出发,强调儿童“从做中学”“从经验中学”,让孩子们在主动作业中运用思想、产生问题、促进思维和取得经验。确实,在一些亲力亲为的数学小实验中,孩子们表现出了一种自然的主动的学习情绪。他们以充沛的精力在这些小实验、小研究中主动地讨论所发生的事,想出种种方案去解决问题,使智力获得了充分的应用和发展。在数学概念的教学中,设计一些孩子能力所能致的小研究活动,可以让孩子对这些抽象的数学概念得到进一步体验、内化,得到课堂教学所不能抵达的效果。
孩子对于较大的单位比如说“千米”“吨”等,由于其经验的限制往往没有什么概念。只是,教师这样说了,他也便这样记了,对他而言也仅仅只是一个简单的字符而已。仅仅通过课堂教学,那么“千米”在孩子们的印象中便是“1千米=1000米”是一个不能用手丈量的长度;“吨”在孩子们的印象中便是“1吨=1000千克”是一个拿不动的质量。至于“1千米”到底有多长,“1吨”到底有多重?孩子们心中并无底,才使得经常会出现:一幢居民楼高约20(千米);一节火车车厢载重量为60(千克)这样的笑话。如果我们能让孩子们来进行切身的体验再附以一些小实验,这些问题便能迎刃而解了。
概念是枯燥的、乏味的,但却是重要的。对于第一学段的孩子们我们不能假定他们都非常清楚学习数学概念的重要性,指望他们能投入足够的时间和精力去学习数学概念,也不能单纯地依赖教师或家长的“权威”去迫使孩子们这样做。那么就需要我们积极地引领他们,使之学得轻松,学得扎实,让他们体会到数学所散发出的无穷魅力,让概念深入心中,为数学学习服务。
小学数学概念教学: 理论与实践【第二篇】
小学数学概念一般可以分为三种情况:一是定义型的概念,如约数、倍数、分数等。这些概念,教材中有确切的定义。二是描述型的概念,如直线、小数等。这些概念,教材中没有严格的定义,只用语言描述了其基本特征。三是感知型的概念,这种概念,在小学阶段既没有下严格的定义,也无法用语言描述,只能用实物或图形让学生直观感知认识。如圆的概念,义务教材第一册,课本上只画了一个圆的图形,并注明这就是圆。义务教材第九册也没有给出圆的定义,只是说“圆是平面上的一种曲线图形”。对于这些概念如何进行教学呢?一般要经过引入、形成、巩固和发展四个环节。在每一个教学环节中,为了达到一定的教学目的,教师要根据概念的不同情况及学生的具体实际,采用相应的教学方法。
一、概念的引入。
1.形象直观地引入。
所谓形象直观地引入概念,就是通过学生所熟悉的生活事例,以及生动形象的比喻,提出问题,引入概念;或者采用教具、模型、图表、幻灯演示及让学生动手操作等增加学生的感性认识,然后逐步抽象,引入概念。
如,在三年级教学三角形的特性时,可以让学生想想,在实际生活中你见过哪些地方用到了“三角形”?根据学生的回答,教师提出问题,自行车的三角架,支撑房顶的梁架,电线杆上的三角架等,它们为什么都要做成三角形的而不做成四边形的呢?进而揭示三角形具有稳定性的特性。这样,利用学生的生活实际和他们所熟悉的一些生活实际中的事物或事例,从中获得感性认识,在此基础上引入概念,是符合儿童认知规律的。
现代心理学认为,实际操作是儿童智力活动的源泉。通过学生的'实际操作引入概念,可以使抽象的概念具体化。操作活动,对学生的思维能力的发展有着极大地推动作用。教学中,可以让学生亲自动手,量一量、分一分、算一算、摆一摆,从而获得第一手感性材料,为抽象概括出新概念打下基础。
如教学“圆周率”的概念时,可以让学生做几个直径不等的圆,在直尺上滚动或用绳子量出圆的周长,算一算周长是直径的几倍。让学生自己发现得知圆的大小虽然不同,但周长总是其直径的3倍多一些,这时,教师揭示:圆周长是同圆直径的3倍多,是个固定的数,我们称它为“圆周率”。
2.计算引入。
当通过计算能揭示数与形的某些内在矛盾或本质属性时,可以从计算引入概念。
如,教学“互为倒数”这个概念时,教师先出示一组题让学生口算:3×1/3,1/7×7,3/4×4/3,9/11×11/9……,算后让学生观察这些算式都是几个数相乘,它们的乘积都是几。根据学生的回答,教师指出:象这样的乘积是1的两个数叫做互为倒数。其它如比例、循环小数、约分、通分、最简分数等都可以从计算引入。
3.在学生原有概念的基础上引入。
[1][2][3]。
小学数学概念教学: 理论与实践【第三篇】
数学概念比较抽象,而小学生,特别是低年级小学生,由于年龄、知识和生活的局限,其思维处在具体形象思维为主的阶段。认识一个事物、理解一个数学道理,主要是凭借事物的具体形象。因此,教师在数学概念教学的过程中,一定要做到细心、耐心,尽量从学生日常生活中所熟悉的事物开始引入。这样,学生学起来就有兴趣,思考的积极性就会高。
2、运用旧知识引出新概念
数学中的有些概念,往往难以直观表述。如比例尺、循环小数等,但它们与旧知识都有内在联系。我就充分运用旧知识来引出新概念。在备课时要分析这个新概念有哪些旧知识与它有内在的联系。利用学生已掌握的旧知识讲授新概念,学生是容易接受的。把已有的知识作为学习新知识的基础,以旧带新,再化新为旧,如此循环往复,既促使学生明确了概念,又掌握了新旧概念间的联系。
3、用"变式"引导学生理解概念的本质
在学生初步掌握了概念之后,我经常变换概念的叙述方法,让学生从各个侧面来理解概念。概念的表述方式可以是多种多样的。如质数,可以说是"一个自然数除了1和它本身,不再有别的因数,这个数叫做质数。"有时也说成"仅仅是1和它本身两个因数的倍数的数"。学生对各种不同的叙述都能理解,就说明他们对概念的理解是透彻的,是灵活的,不是死背硬记的。有时可以变概念的非本质特征,让学生来辨析,加深他们对本质特征的理解。
4、从具体到抽象,揭示概念的本质
在教学中既要注意适应学生以形象思维为主的特点,也要注意培养他们的抽象思维能力。在概念教学中,要善于为学生创造条件,引导他们通过观察、思考、探求概念的含义,沿着由感性认识到理性认识的认知过程去掌握概念。这样,可以培养学生的逻辑思维能力。
1 揭示概念本质。课改对于概念教学的要求是淡化概念表述的“形式”,而注重其“实质”。具体地说,教学时对一些概念的定义形式不必花大力气,对一些文字叙述较繁的概念不必要求学生背诵,对涉及的一些较深的理论不必去深究,但对概念的实质要理解,要引导学生通过分析、比较、综合、抽象、概括等逻辑思维方法,把握事物的本质和规律,从而掌握概念。例如分式概念的教学,通过实例引导学生分析、综合,找出分式的特点:一是具有形式“a/b”;二是形式中的a、b表示整式;三是形式中的b必须含有字母;这三个条件缺一不可。这样一来,概念的`特征一目了然,学生易于接受,便于掌握。
为让学生充分理解概念,在呈现概念的定义之后,还需要向学生呈现概念的正反例证。呈现的例证要在本质属性上有变化,以利于学生正确地理解概念。如呈现了方程的定义后,接着给学生呈现一些有变化的例证:x=5,a+5=c。另外,还要呈现一些反例来从反面说明,如3+2=5,y7等。
2 加强概念类比。“有比较才有鉴别”。数学的一些概念和规律,理论性较强,而且比较抽象,如果将它与学生熟悉的(已知的)相关实体(事物)进行比较,就能帮助学生理解概念、掌握规律。例如,在教分式这个概念的时候,教师可以将其与学生已经学过的分数进行类比。由分数的分子分母是整数,类比得出分式的分子分母应该是整式。这样做,将新的内容放到学生熟悉的环境中,既提高了学生的兴趣,又降低了学生学习的难度。
3 重视运用变式。所谓变式,就是变换提供给学生的各种感性材料的表现形式,使其非本质属性时有时无,而本质属性保持恒在。如“方程”的变式中,“含有未知数的等式”这一本质不变,但未知数的个数、位置、表示的方式等有变化。教师要引导学生通过分析、对比,运用概念的特征对正反例证作出正确分类,把握事物隐藏的本质属性,克服思维定势的负效应。
小学生的思维还处于具体形象思维的阶段,对于数学课本上的专业术语理解困难,教师在讲解时,因为用词不当容易引起学生的误解,繁琐的解释甚至还会引起学生对数学产生厌烦心理。因此,教师可根据小学生好奇的心理,将抽象的词语转化为小学生容易接受的具体事物来举例说明。例如“平均数”表示一组数据集中趋势的量数,它是反映数据集中趋势的一项指标,解答平均数应用题的关键在于确定“总数量”以及和总数量对应的总分数。这种专业术语教师也不知道该怎样解释学生才能听懂,此时教师就可以通过生活中的例子来为学生们说明平均数的概念:老师带来了五个苹果来教室,这个时候教室里坐着五个同学,老师便把这五个苹果分给了五个同学,每个同学都得到了一个苹果,十分高兴。每个同学手里都有一个苹果,这“一个苹果”就是平均数。教师用形象的例子为学生解释了平均数的含义,浅显易懂,学生形象地理解了“平均数”这一概念的本质特征,记忆牢固,大概了解了平均数的基本算法,教师再紧跟教材讲解课本上的运算方式,有效训练了学生的思维,提高了教学效率。
小学生好奇心极重,在好奇心的驱动下,对知识会产生强烈的渴望,教师用提问的形式引导学生思考,能够让学生在自由的氛围下散发思维,锻炼自己的数学能力,提高对数学概念的理解能力。例如在学习乘法时,学生没有多大的概念,教师就可以根据以前学过的加法知识通过提问引入对乘法知识的讲解:这里有三个书包,每个书包里装有两本书,请同学们先算一算这里一共有几本书?学生运用自己学过的加法知识很快算出了答案,这时老师再提问:还有没有更简单的算法将这几本书的数量算出来?事先预习过的学生应该对乘法已经有所了解,但仍与大部分学生一样对这种枯燥的词语感到生涩,教师在复习了加法知识的基础上,延伸出新知识乘法的概念,学生在经过思考后思维已经活跃起来,对于乘法的概念能够很快吸收理解并运用。
数学源于实践,又应用于实践。有些抽象的概念在经过动手实践之后一目了然,而小学生的动手能力极强,教师便可以根据这一特点,由表入里,由浅入深,引导学生探究数学规律。例如在教学“平行四边形的面积”时,由于之前学生并没有接触过这种形状,大脑一片空白,没有任何解题思路,因此,教师在课前就可以要求学生找到数学辅助工具包里的火柴棍和橡皮筋,将其绑成一个长方形,上课时,教师便要求学生把已经做好的长方形模具拿出来,观察教师是如何将长方形转化为平行四边形的,由此引出平行四方形的定义,方便进入“平行四边形面积”的教学内容。教师让学生先求出长方形的面积,再运用学过的知识通过自己的方法求出平行四边形,甚至可以用直尺对自己做好的模具进行测量,鼓励学生发散思维,用自己能想到的方式对平行四边形的面积进行计算,最后自己探索出求平行四边形面积的运算方式,通过动手实践、运用旧知识来解决新问题,学生的思维在兴趣的驱使下得到锻炼,使他们体会到成功的喜悦。
小学数学概念教学: 理论与实践【第四篇】
在小学如何确定或选择应教的数学概念,是一个复杂的问题。根据我们的经验,在选定数学概念时既要考虑到需要,又要考虑到学生的接受能力。
(一)选择数学概念时应适应各方面的需要。
1.社会的需要:主要是指选择日常生活、生产和工作中有广泛应用的数学概念。绝大部分的数、量和形的概念是具有广泛应用的。但是社会的需要不是一成不变的,而是常常变化的。因此小学的数学概念也应随着社会的发展适当有所变化。例如,1991年我国采用法定计量单位后,原来采用的市制计量单位就不再教学了。
2.进一步学习的需要:有些数学概念在实际中并不是广泛应用的,但是对于进一步学习是重要的。例如质数、合数、分解质因数、最大公约数和最小公倍数等,不仅是学习分数的必要基础,而且是学习代数的重要基础,必须使学生掌握,并把它们作为小学数学的基础知识。
3.发展的需要:这里主要是指有利于发展儿童的身心的需要。例如,引入简易方程及其解法,不仅有助于学生灵活的解题能力,减少解题的困难程度,而且有助于发展学生抽象思维的能力。在我国的小学数学中,教学方程产生了很好的效果。小学生不仅能用方程解两三步的问题,而且能根据问题的具体情况选择适当的解答方法。这里举一个例子。
要求五年级的一个实验班的38名学生(年龄―岁)解下面两道题:
学生能用两种方法解:算术解法和方程解法。用每种方法解题的正确率都是%。下面是两个学生的解法。
一个中等生的解法:
一个下等生的解法:
多少米?
这道题是比较难的,学生没有遇到过。结果很有趣。%的学生用方程解,%的学生用算术方法解。而用方程解的正确率比用算术方法解的高22%。
下面是两个学生的解法。
一个优等生用算术方法解:
一个中等生用方程解:
解:设买来蓝布x米。
(二)选择数学概念时还应考虑学生的接受能力。小学生的思维特点是从具体形象思维向抽象逻辑思维过渡。一般地说,数学概念具有不同程度的抽象水平。在确定教学某一概念的必要性的前提下还应考虑其抽象水平是否适合学生的思维水平。为此,根据不同的情况可以采取以下几种不同的措施:
1.学生容易理解的一些概念,可以采取定义的方式出现。例如,在四五年级教学四则运算的概念时,可以教给四则运算的定义,使学生深刻理解四则运算的意义以及运算间的关系。而且使学生能区分在分数范围内运算的意义是否比在整数范围内有了扩展,以便他们能在实际计算中正确地加以应用。此外,通过概念的定义的教学还可以使学生的逻辑思维得到发展,并为中学的进一步学习打下较好的基础。
2.当有些概念以定义的方式出现时,学生不好理解,可以采取描述它们的基本特征的方式出现。例如,在高年级讲圆的认识时,采取揭示圆的基本特征的方式比较好:(1)它是由曲线围成的平面图形;(2)它有一个中心,从中心到圆上的所有各点的距离都相等。这样学生既获得了概念的直观的表象,又获得了其基本特征,从而为中学进一步提高概念的抽象水平做较好的准备。
3.当有些概念不易描述其基本特征时,可以采取举例说明其含义或基本特征的方法。例如,在教学“量”这概念时,可以说明长度、重量、时间、面积等都是量。对“平面”这个概念可以通过某些物体的平展的表面给以直观的说明。
数学概念的编排,在一定程度上可以看作是各年级对数学概念的选择和出现顺序。数学概念的合理编排不仅有助于学生很好地掌握,而且便于学生掌握运算、解答应用题以及其他内容。根据教学论和我们的实践经验,数学概念的编排应当符合下述原则:既适当考虑数学概念的逻辑系统性又适当考虑学生认知的年龄特点。为了贯彻这一原则,必须考虑以下几点。
(一)采取圆周排列:这一点不仅反映人类的认知过程,而且。
符合儿童的认知特点。如众所周知的,自然数的认识范围要逐渐地扩大,“分数”概念的意义也要逐步的予以完善。
(二)注意概念之间的关系:例如,小数的初步认识宜于放在分数的初步认识之后,以便于学生理解小数可以看作分母是10、100、1000……的分数的特殊形式。把比的认识放在分数除法之后教学,会有助于学生理解比和分数的联系。
(三)概念的抽象水平要符合学生的接受能力:例如,在低年级教学减法的含义,是通过操作和观察使学生理解从一个数里去掉一部分求剩下的部分是多少。而在高年级教学时,宜于通过实际例子给出减法的定义。在低年级教学平行四边形时,只要说明其边和角的特征而不教平行线的认识。但在高年级就宜于先介绍平行线,再给出平行四边形的定义。
(四)注意数学概念与其他学科的配合:数学作为一个工具与其他学科有较多的联系。有些数学概念,如计量单位、比例尺等在学习语文和常识中常用到,在学生能够接受的情况下可以提早教学。
小学生的数学概念的形成是一个复杂的过程。特别是一些较难的数学概念,教学时需要一个深入细致的工作的长过程。根据数学的特点和儿童的认知特点,教学时要注意以下几点。
(一)遵循儿童的认知规律,引导学生抽象、概括出所学概念的本质特征。例如,在低年级教学“乘法”这个概念时,可以引导学生摆几组圆形,每组的圆形同样多,并让学生先用加法再用乘法计算圆形的总数。通过比较引导学生总结出乘法是求几个相同加数和的简便算法。教学长方形时,先引导学生测量它的边和角,然后抽象、概括出长方形的特征。这样教学有助于学生形成所学的概念并发展他们的逻辑思维。
(二)注意正确地理解所学的概念。教学经验表明,学生对某一概念的理解常常显示出不同的水平,尽管他们都参加同样的活动如操作、比较、抽象和概括等。有些学生甚至可能完全没有理解概念的本质特征。这就需要检查所有的学生是否理解所学的概念。检查的方法是多样的,其中之一是把概念具体化。例如,给出一个乘法算式,如3×4,让学生摆出圆形来说明它表示每组有几个圆形,有几组。另一种方法是给出所学概念的几个变式,让学生来识别。例如,下图中有几个长方形摆放的方向不同,让学生把长方形挑选出来。
此外,还可以让学生举实例说明某一概念的意义,如举例说明分数、正比例的意义。
(三)掌握概念间的联系和区别。比较所学的概念并弄清它们的区别,可以使学生深刻地理解这些概念,并消除彼此间的混淆。例如,应使学生能够区分质数与互质数,长方形的周长和面积,正比例和反比例等。在教过有联系的概念之后,可以让学生把它们系统地加以整理,以说明它们之间的关系。例如,四边形、正方形、长方形、平行四边形和梯形可以通过下图加以系统整理,以说明它们的关系。
通过概念的系统整理使学生在头脑中对这些概念形成良好的认知结构。
(四)重视概念的应用。学习概念的应用有助于学生进一步加。
深理解所学的概念,把数学知识同实际联系起来,并且发展学生的逻辑思维。例如,学过长方体以后,可以让学生找出周围环境中哪些物体的形状是长方体。学过质数概念以后可以让学生找出能整除60的质数。
我们的实验表明,由于采取了上述的措施,学生对概念的理解的正确率有较明显的提高。下面是19xx年进行的一次测验中有关学生掌握数学概念的测试结果。
注:1.两个实验班都是五年级,年龄是11―12岁。一个对照班是五年制五年级,另一个是六年制六年级。
年用同一测验测试全国约200个实验班,也得到较好的结果。
上面的测试结果表明,实验班学生学习数学概念的成绩,在认数、几何图形,特别是在学习倒数、比例和扇形方面都优于对照班的学生。最后一项测试结果还表明,实验班学生在发展空间观念和作图能力方面优于对照班学生。
四结论。
在小学加强数学概念的教学对于提高学生的数学概念的认知水平具有重要的意义。
在小学如何确定教学的`数学概念是一个重要的复杂的问题。在选定概念时,既要很好地考虑需要,又要很好地考虑学生的接受能力。
合理地安排数学概念对于学生掌握他们有很大帮助。在编排概念时,既要充分考虑所教概念的逻辑系统性,又要照顾到不同年龄的学生的认知特点。
教学的策略对于形成学生的数学概念起着重要的作用。在教学概念时教师应当遵循儿童的认知规律和激发学生思考的原则,并且注意使学生正确理解概念的义,掌握概念间的联系和区别,并在实际中应用所学的概念。
(本文是1992年向第七届国际数学教育会议提交的论文,曾在大会第一研讨组上宣读。)。
将本文的word文档下载到电脑,方便收藏和打印。
小学数学概念教学: 理论与实践【第五篇】
数学科学严谨的推理性,决定了搞好概念教学是传授知识的首要条件?由于概念不清,表现出思路闭塞,逻辑紊乱,在学生中屡见不鲜?因此,搞好概念教学是实现知识传授和能力培养的重要环节,是提高教学质量的一个重要方面。
小学数学概念教学: 理论与实践【第六篇】
随着时代的前行,小学数学教学以不能滞于传授基本的数理知识,而重在培养学生的学习兴趣,学习方法和初步的逻辑思维和空间想象能力。因此,教学中要从数学学科的特性和小学生的接受心理出发,注重教学环节的创新。
一、创新情景。
教育(-雪风网络xfhttp教育网)学家苏霍姆斯基说:“如果老师不想法使学生产生情绪高昂和智力震动的.内心状态,就急于传授知识,不动情感的脑力劳动就会带来疲倦,没有欢欣鼓舞的心情,没有学习兴趣,学习就会成为学生的沉重负担。”随着数学教学的升级,数学学科自身的单调、抽象的特征逐渐显示,增强学生的兴趣,让学生主动参与,是数学教学应解决的首要环节。如何因课制宜,创设学生成熟或喜爱或惊喜的具体“情境”,是数学课堂设计的“切入点”。
二、创设引导。
荷兰数学教育(-雪风网络xfhttp教育网)家费赖登塔尔提出数学教学“在创造”的教学理论,强调学习数学唯一正确方法是让学生进行再创造,也就是由学生本人把要学的数学知识自己去发现或创造出来,教师的任务是引导和帮助学生的再创造,而不是把知识灌输给学生。我认为,在教学过程中应该注重两个方面的引导。
1、做好新课的过渡引导,过渡要讲究“近”和“简”,“近”就是过渡内容和所学知识联系紧密,能起到“铺路架桥”的作用。“简”就是简捷明了,突出主题,找到与新知识的连接点。
2、做好解题的思路引导。数学的难点在于解题,特别是应用题,特别是应用题往往通过变换叙述方式,置换情节来迷惑学生,易造成学生解题受阻。教师此时可以通过“补明”条件改变叙述方式,画出图示或构造相关的模型等方法,增强学生解决疑难问题的兴趣和信心,锻炼独立思考问题的习惯和能力。
三、创新疑问。
一个没有问题的学生是难有创造力的。小学数学应着力培养学生质疑问难的意识和能力,一方面要求教师要创造民主平等的教学气氛,鼓励学生质疑问难;另一方面要求教师善于设计问题,让学生去发现、去探索,激发学生求知的欲望,寻找解决问题的办法。设计问题应注意两点:
1、从数学学科特性出发,善找关节点设问,教学中适时的运用概念对比法则对比、公式对化和解决对比进行设问,便于学生理解掌握知识的联系和规律性,加强记忆,融会贯通。
2、从小学生的认知特点出发,抓好集体设问、讨论解答。如围绕教学内容在班上展开以班为单位的提问比赛,教师适时的给予肯定和小结,这样,即可以培养问题的习惯和提问的勇气,便于老师即使掌握教学效果,进行知识梳理。
小学数学概念教学: 理论与实践【第七篇】
数学概念是学生接触与学习每一个新知识点必先学习的东西,它对于学生的整个数学科目的学习来说是基石一般的存在,因此学生从小学数学概念起必须打好学习的基础,让学生在清晰的了解各种概念的基础上,帮助他们学习最基本的数学知识,只有这样才能让数学学习的路越走越平整、越走越宽敞。
1、从数学概念的涵义与构成方面来看。首先是涵义方面,从教学的角度来看,数学概念指的是在客观现实中数量关系与空间形式二者的本质属性在人们脑中所形成的反应,其表现为数学用语中的一些专用名词、符号或术语等,比方说是“周长”、“体积”。其次是概念的构成方面,一般来说数学概念是可以分成两个组成部分,一个是内涵,另一个是外延。概念的内涵其实指的就是这个概念所反映出来的所有对象的一个共同本质属性总和。比方说是三角形的概念,它的内涵所指的就是其本质属性中“三条线段”与“围成”的总和。而概念的外延指的就相对会比较广泛,它指的是此概念所囊括的一切对象总和。以四边形的概念为例,它就包括了正方形、长方形、梯形等所有很多对象。
2、小数学概念的特点。小学时期数学概念的特点其他可以从三个方面来进行简单的归纳:第一个就是其呈现形式上的特点。由于小学数学是一个引导学生入门的时期,因此它的概念在呈现方式上也会显得更为多样化,像是最初采用图画的方式,再到后来的描述方式,最后还有定义式等等。第二个特点就是直观性较强。一般来说数学概念最为突出的特点就是其抽象性与概括性,但我们在进行小学阶段数学教学时,就会发现小学数学概念通常都会定义得比较直观,比较形象具体,基本都是以小学生的接受能力与理解能力为起点来进行设计的。第三个特点是教学阶段性较强。小学时期的教学会受到很多客观原因的局限,从而导致教师在进行数学教学时,所讲解的数学知识也会存在极强的阶段性。比方说在低年级时,孩子们的理解能力与认识能力还尚未发展到一定的水平,因此对于很多抽象性的知识很难理解,因此教师在讲解时就只能通过分阶段逐步渗透的办法来解决问题。
开展概念教学可以从多种形式与内容入手,既要梳理各种概念之间的联系与区别,又要形成统一的系统概念体系,可以从以下几个方面进行:
1、采用不同呈现形式开展小学数学概念教学。概念教学的形式众多,可以从图画式教学入手,教师在采用这种方式进行教学时,一定要注意引导学生自主的去发掘图画中所蕴含的真正涵义,从而达到揭示概念本质的效果,从而让学生对概念有个更清晰的认识。以梯形概念教学为例,教师在开展教学工作时,应该要就所展示出来的图画适时的引导学生去探索并揭示出梯形的本质特征,并且最终实现将表象图画转换成抽象数学语言的目的。其次是描述式,其实采用这种呈现形式的概念一般都是“字”与“形”相结合的,比方说是小数的概念、直线的概念,在概念描述中直接就把其本身的图形或默示所标示出来了,教师在进行教学时只需要把“形”所表达的意思与孩子们传达清楚再结合“字”就能使他们快速掌握这个知识点。还有就是定义式,这种方法一般适于一些高年级的学生,相对而言它的概括性以及抽象性都会强很多,因此教师在教学时可以适时的采用一些直观的教学工具或举例讲解等办法,将抽象的知识转化成具体形象的事物,让学生们快速理解与掌握。
2、从概念间的区别与联系入手,让学生形成数学概念系统。首先是同一概念在教学时的联系与区别。因为小学数学在很多时候,虽然是同一个概念,但是在不同的时期所要求的教学程度是大不相同的,因此对于概念的讲解程度也会有所区别。以分数的教学为例,在三年级时我们的教学要求只是停留在让孩子们认识分数的程度,而在五年级时,我们就必须向他们解释分数的真实意义与性质。再比方说是方程这一概念,在刚开始学习的时候,我们只要求学生有一个基础的了解与渗透,而到高年级后就会要求他们对方程给与一个明确的定义。其次是不同概念之间也存在着联系。虽然有些概念它们是大不相同的,但是在某些程度上也是存在着一定的联系,因为数学的概念并不是孤立的,它们是相辅相成的。教师在进行日常教学时应该有意识的引导学生去探索与明确这些数学概念之间所存在的联系,为他们更好的构建概念系统打下结实的基础。
三、结束语。
总之,教师在开展小学数学概念教学时必须以学生实际情况为根据,采用最为合适的方法进行概念教学,因为只有从小打好基础,才能实现数学概念教学的目标。
参考文献。
[2]许中丽.提升小学数学概念教学有效性策略的研究综述[j].南昌教育学院学报.2015(03)。
小学数学概念教学: 理论与实践【第八篇】
概念是数学知识的基础,是数学思想与方法的载体,所以概念教学尤为重要?在概念教学中,教师既要启发学生对所研究的对象进行分析、综合、抽象,还要讲清概念的形成过程,阐明其必要性和合理性。
数学科学严谨的推理性,决定了搞好概念教学是传授知识的首要条件?由于概念不清,表现出思路闭塞,逻辑紊乱,在学生中屡见不鲜?因此,搞好概念教学是实现知识传授和能力培养的重要环节,是提高教学质量的一个重要方面。