高一数学集聚教案(优质4篇)

网友 分享 时间:

【阅读指引】阿拉题库网友为您分享整理的“高一数学集聚教案(优质4篇)”范文资料,以供您参考学习之用,希望这篇文档对您有所帮助,喜欢就下载分享给大家吧!

高一数学教案集合【第一篇】

数学教案-圆柱和圆锥

圆柱和圆锥

单元教学要求:

1、 使学生认识圆柱和圆锥,掌握它们的特征,知道圆柱是由两个完全一样的圆和一个曲面围成的,圆锥是由一个圆和一个曲面围成的;认识圆柱的底面、侧面和高;认识圆锥的底面和高。进一步培养学生的空间观念,使学生能举例说明。圆柱和圆锥,能判断一个立体图形或物体是不是圆柱或圆锥。

2、使学生知道圆柱侧面展开的图形,理解求圆柱的侧面积、表面积的计算方法,会计算圆柱体的侧面积和表面积,能根据实际情况灵活应用计算方法,并认识取近似数的进一法。

3、使学生理解求圆柱、圆锥体积的计算公式,能说明体积公式的推导过程,会运用公式计算体积、容积,解决有关的简单实际问题。

单元教学重点:圆柱体积计算公式的推导和应用。

单元教学难点 :灵活运用知识,解决实际问题。

(一)圆柱的认识

教学内容:教材第3~4页圆柱和圆柱的侧面积、“练一练”,练习一第1—3题。

教学要求:

1、使学生认识圆柱的特征,能正确判断圆柱体,培养学生观察、比较和判断等思维能力。

2、使学生认识圆柱的侧面,理解和掌握圆柱侧面积的计算方法。进一步培养学生的空间观念。

教具学具准备:教师准备一个长方体模型,大小不同的圆柱实物(如铅笔、饮料罐、茶叶筒等)若干,圆柱模型;学生准备圆柱实物(要有一个侧面贴有商标纸或纸的圆柱体),剪下教材第127页图形、糨糊。

教学重点:认识圆柱的特征,掌握圆柱侧面积的计算方法。

教学难点 :认识圆柱的侧面。

教学过程 :

一、复习旧知

1、提问:我们学习过哪些立体图形?(板书:立体图形)长方体和正方体有什么特征?

2、引入新课。

出示事先准备的圆柱形的一些物体。提问学生:这些形体是长方体或正方体吗?说明:这些形体就是我们今天要学习的新的立体图形圆柱体。通过学习要认识它的特征。(板书课题)

二、教学新课

1、认识圆柱的特征。

请同学们拿出自己准备的圆柱形物体,仔细观察一下,再和讲台上的圆柱比一比,看看它有哪些特征。提问:谁来说一说圆柱有哪些特征?

2、认识圆柱各部分名称。

(1)认识底面。

出示圆柱,让学生观察上下两个面。说明圆柱上下两个面叫做圆柱的底面。(板书:——底面)� (把上面板书补充成:上下两个面是完全相同的圆)

(2)认识侧面。

请大家把圆柱竖放,用手摸一摸周围的面,(用手示意侧面)你对这个面有什么感觉?说明:围成圆柱除上下两个底面外,还有一个曲面,叫做圆柱的侧面。追问:侧面是怎样的一个面?(接前第二行板书:侧面是一个曲面)

(3)认识圆柱图形。

请同学们自己再摸一摸自己圆柱的两个底面和侧面,并且同桌相互说一说哪是底面,哪是侧面,各有什么特点。

说明:圆柱是由两个底面和侧面围成的。底面是完全相同的两个圆,侧面是一个曲面。

在说明的基础上画出下面的立体图形:

(4)认识高。

长方体有高,圆柱体也有高。请看一下自己的圆柱,想一想,圆柱体的高在哪里?试着量一量你的圆柱高是多少。(板书:高)谁来说说圆柱的。高在哪里?说明:两个底面之间的距离叫做高。(在图上表示出高,并板书:两个底面之间的距离)让学生说一说自己圆柱的高是多少,怎样量出来的。提问:想一想,一个圆柱的高有多少条?它们之间有什么关系?(板书:高有无数条,高都相等)

3、巩固特征的认识。

(1)提问:你见过哪些物体是圆柱形的?

(2)做练习一第1题。

指名学生口答,不是圆柱的要求说明理由。

(3)老师说一些物体,学生判断是不是圆柱:汽油桶、钢管、电线杆、腰鼓……

4、教学侧面积计算。

(1)认识侧面的形状。

教师出示圆柱模型说明:请同学们先想一想,如果把圆柱侧面沿高剪开再展开,它会是什么形状。现在请大家拿出贴有商标纸的饮料罐(教师同时出示),沿着它的一条高剪开,(教师示范)然后展开,看看是什么形状。学生操作后提问:你发现圆柱体的侧面是什么形状?

(2)侧面积计算方法。

①提问:得到的长方形的长和宽跟圆柱体有什么关系呢?请同学们看从第3页最后两行到4页的“想一想”,并在横线上填空。提问“想一想”所填的结果。

②得出计算方法。

提问:根据它们之间的这种关系,圆柱的侧面积应该怎样算?为什么?(板书:圆柱的侧面积=底面周长×高)

(3)教学例1

出示例1,学生读题。指名板演,其余学生做在练习本上。集体订正。

三、巩固练习

1、提问:这节课学习了什么内容?

2、做圆柱体。

让学生按剪下的第127页的图纸做一个圆柱体。指名学生看着做的圆柱体说一说圆柱的特征,边说边指出圆柱的各个部分。让学生说一说圆柱的侧面积怎样计算。

3、做“练一练”第3题。

指名两人板演,让学生在练习本上列出算式。集体订正,要求说一说每一步求的是什么。

4、思考:

如果圆柱的底面周长和高相等,侧面展开是什么形状,

四、布置作业

课堂作业 :练习一第2题。

高一数学集合教案【第二篇】

拿到试卷后可以先快速浏览一下所有题目,根据积累的考试经验,大致估计一下每部分应该分配的时间。对于能够很快做出来的。题目,一定要拿到应得的分数。

二、确定每部分的答题时间

1、考试时占用了很多时间却一点也没有做出来的题目。对于这类题目,你以后考试时就应该尽量减少时间,或者放弃,等以后学习进阶了再尝试着做。

2、考试时花了过多的时间才做出来的题目。对于这类题目,你以后平时做题时要尽量加快速度,或者通过“反复训练”等提高反应速度,这样,你下次考试时能用较少的时间做出来。

三、碰到难题时

1、你可以先用“直觉”最快的找到解题思路;

2、如果“直觉”不管用,你可以联想以前做过的类似的题目,从而找到解题思路;

3、如果这样也不行,你可以猜测一下这道题目可能涉及到的知识点和解题技巧。

4、对于花了一定时间仍然不能做出来的题目,要勇于放弃。

四、卷面整洁、字迹清楚、注意小节

做到卷面整洁、字迹清楚,把标点、符号、解题步骤等小的地方尽量做好,不要丢掉应得的每一分。

高一数学集合教案【第三篇】

说课的题目是《集合的含义与表示》,下面将从教材分析、学情分析、教学目标、教法学法、教学过程、教学反思六个方面说一下对这节课的教学研究。

一、教材分析

教学内容:本节课选自《普通高中课程标准实验教科书》人教a版必修1第一章第一节《集合的含义与表示》,教学安排为1课时。

重点难点:在教学中,把集合的含义与表示方法作为本节课的重点,而把集合表示方法的恰当选择作为教学难点。

二、学情分析

对于刚升入高中的学生来说,基础知识相对扎实,具备一定的逻辑思维能力;从认知情况来看,对于生活实例,他们的感性大于理性,抽象概括能力较弱,但是学生们富有好奇心,充满求知欲,愿意接触新事物。哈佛大学校长陆登庭曾说过“如果没有好奇心和求知欲做动力,就不可能产生对社会具有巨大价值的发明创造。”因此对学生的好奇心和求知欲加以引导,才能让学生的学习更富创造性。

三、教学目标

知识与技能:要求学生理解集合的含义,元素的特征;元素与集合的关系,熟练掌握常用数集的记号,以及掌握集合的表示方法。

过程与方法:教学过程中,应用自然语言与集合语言描述数学对象,与学生一道归纳出集合的含义,掌握从具体到抽象,从特殊到一般的研究方法。

情感态度价值观:使学生感受数学的简洁美与和谐统一美,培养学生独立思考、敢于创新、勇于探索的科学精神,激发学生学习数学的'兴趣,从而实现情感、态度、价值观方面的培养目标。

四、教法学法

由于本节课是高中数学的起始课,而且概念较多,所以在教学过程中我决定从身边实例出发,通过老师引导,小组讨论、自主探究等多种方式逐渐培养学生的抽象概括能力;为了达到预期的教学效果,在学法指导方面,使教学过程活动化、学习过程自主化、获取知识的过程体验化,将教学内容转化为学生自主探究的活动过程,体现新课程改革倡导的自主学习的理念。

五、教学过程

(一)创设情境、导入新课。我以老师走进教室关上门,教室内的所有人能否组成集合作为引入,这样生活化的场景让学生感到亲切,集中了注意力,同时抛出问题,为后继教学埋下伏笔,接着介绍集合论的创始人,德国数学家康托,这样处理既让学生了解了相关的数学背景,同时又提高了学生的学习兴趣。

(二)类比归纳、理解含义。此处我举得五个例子,既有数字又有图形,还有日常生活中的人和物,这些实例贴近学生生活,更进一步抓住了学生的心理,调动了学生学习的积极性,紧接着通过老师引导,与学生一起归纳出集合的含义,并且让学生对五个例子进行解释,加深对集合含义的理解。

(三)合作探究、把握特征。此处我设计的三个实例依然来自于我们的生活,充分体现了数学来自于生活,又为生活服务的思想。通过教学过程活动化,知识过程体验化,将教学内容转化为老师引导下学生自主探究的活动过程,以下是我的教学实录。在学生已经了解元素特征的情况下趁热打铁,给出以下4个例子。让学生稍加思考之后进行回答,进一步加深对集合中元素特征的理解。数学具有形式上的简洁美,在此处明确元素与集合的关系,并给出相应的符号表示,以及常用数集的记号。由于这些符号以后经常会用到,在课堂上理解的基础上更需要课下的强化记忆,达到“从来都不用想起,永远也不会忘记”的效果。

(四)列举描述、恰当选择。集合语言是现代数学的基本语言,通过学习使学生学会使用最基本的集合语言表示有关数学对象,体会用集合语言表达数学内容的简洁性、准确性,在此给出了使用列举法表示集合的具体方法,为了巩固授课效果,在这个知识点后面设计了一道练习题,设计这道题主要是为了培养学生的应用意识,激发学生的求解兴趣,同时还可以突破本节课的教学重点。

(五)实战演练、拓展提升。在这里我设计了两道用两种方法表示集合的题目,这样设计首先是想考查学生对列举法、描述法掌握的情况,也希望通过两种表示方法的练习,更好地把握列举法和描述法各自的特点。引导学生讨论应当如何根据实际问题选择恰当的集合表示方法。通过这道题目的练习,既巩固了所学知识点,又培养了学生一题多解灵活运用的数学思维能力。

(六)归纳方法、课后延伸。在这个环节,我首先引导大家对列举法和描述法进行了归纳,指明其特点并让大家根据情况进行恰当选择;小结部分采用学生回忆—归纳—总结的方式把知识点串联起来,对本节课的知识形成系统而全面的认识;在作业布置方面,一道必做题,巩固消化知识;一道选做题,课外拓展延伸,体现了作业的巩固性和发展性原则。我的板书设计简明直观,体现了知识间的内在联系,能让学生更好地把握知识要点。

六、教学反思

本节课通过引入贴近生活的实例,激发了学生的学习兴趣,并产生了感性认识;通过分层次地不断提问、启发、引导,触发了学生的理性思考,并让学生通过活动加深了对知识的理解;通过及时有效的点拨,使知识得到巩固,能力得以提升。苏霍姆林斯基曾说过:“人的心里有一种根深蒂固的需要——总想感到自己是发现者,研究者,探寻者。正是这种需要,引领着学生进入知识的殿堂,真正感受到数学的无穷魅力!”

高一数学教案集合【第四篇】

一。 教学内容:平面向量与解析几何的综合

二。 教学重、难点:

1、 重点:

平面向量的基本,圆锥曲线的基本。

2、 难点:

平面向量与解析几何的内在联系和知识综合,向量作为解决问题的一种工具的应用意识。

典型例题

[例1] 如图,已知梯形abcd中, ,点e分有向线段 所成的比为 ,双曲线过c、d、e三点,且以a、b为焦点,求双曲线的离心率。

解:如图,以ab的垂直平分线为 轴,直线ab为 轴,建立直角坐标系 轴,因为双曲线经过点c、d且以ab为焦点,由对称性知c、d关于 轴对称

设a( )b( 为梯形的高

设双曲线为 则

由(1): (3)

将(3)代入(2):∴ ∴

[例2] 如图,已知梯形abcd中, ,点e满足 时,求离心率 的取值范围。

解:以ab的垂直平分线为 轴,直线ab为 轴,建立直角坐标系 轴。

因为双曲线经过点c、d,且以a、b为焦点,由双曲线的对称性,知c、d关于 轴对称 高中生物。

依题意,记a( )、e( 是梯形的高。

设双曲线的方程为 ,则离心率由点c、e在双曲线上,将点c、e的坐标和由(1)式,得 (3)

将(3)式代入(2)式,整理,得故 ,得解得所以,双曲线的离心率的取值范围为

[例3] 在以o为原点的直角坐标系中,点a( )为 的直角顶点,已知 ,且点b的纵坐标大于零,(1)求 关于直线ob对称的圆的方程。(3)是否存在实数 ,使抛物线 的取值范围。

解:

(1)设 ,则由 ,即 ,得 或

因为

所以 ,故

(2)由 ,得b(10,5),于是直线ob方程:由条件可知圆的标准方程为:得圆心(

设圆心( )则 得 ,

故所求圆的方程为(3)设p( )为抛物线上关于直线ob对称的两点,则

即 、于是由故当 时,抛物线(3)二:设p( ),pq的中点m(∴ (1)-(2): 代入∴ 直线pq的方程为

∴ ∴

[例4] 已知常数 , 经过原点o以 为方向向量的直线与经过定点a( 方向向量的直线相交于点p,其中 ,试问:是否存在两个定点e、f使 为定值,若存在,求出e、f的坐标,不存在,说明理由。(20xx天津)

解:根据题设条件,首先求出点p坐标满足的方程,据此再判断是否存在两定点,使得点p到两定点距离的和为定值。

∵ ∴

因此,直线op和ab的方程分别为 和消去参数 ,得点p( ,整理,得

① 因为(1)当(2)当 时,方程①表示椭圆,焦点e 和f 为合乎题意的两个定点;

(3)当 时,方程①也表示椭圆,焦点e 和f( )为合乎题意的两个定点。

[例5] 给定抛物线c: 夹角的大小,(2)设 求 在 轴上截距的变化范围

解:

(1)c的焦点f(1,0),直线 的斜率为1,所以 的方程为 代入方程 )、b(则有

所以 与

(2)设a( )由题设

即 ,由(2)得 ,

依题意有 )或b(又f(1,0),得直线 方程为

当 或由 ,可知∴

直线 在 轴上截距的变化范围为

[例6] 抛物线c的方程为 )( 的两条直线分别交抛物线c于a( )两点(p、a、b三点互不相同)且满足 ((1)求抛物线c的焦点坐标和准线方程

(2)设直线ab上一点m,满足 ,证明线段pm的中点在 轴上

(3)当 ),求解:(1)由抛物线c的方程 ),准线方程为

(2)证明:设直线pa的方程为

点p( )的坐标是方程组 的解

将(2)式代入(1)式得

于是 ,故 (3)

又点p( )的坐标是方程组 的解

将(5)式代入(4)式得 ,故

由已知得, ,则设点m的坐标为( ),由 。则

将(3)式和(6)式代入上式得

即(3)解:因为点p( ,抛物线方程为由(3)式知 ,代入

将 得因此,直线pa、pb分别与抛物线c的交点a、b的坐标为

于是, ,

因即 或

又点a的纵坐标 满足当 ;当 时,所以,

[例7] 已知椭圆 和点m( 的取值范围;如要�

解: 不可能为钝角,证明如下:如图所示,设a( ),直线 的方程为

由 得 ,又 , ,若 为钝角,则

即 ,即

即∴

模拟(答题时间:60分钟)

1、 已知椭圆 ,定点a(0,3),过点a的直线自上而下依次交椭圆于m、n两个不同点,且 ,求实数 的取值范围。

2、 设抛物线 轴,证明:直线ac经过原点。

3、 如图,设点a、b为抛物线 ,求点m的轨迹方程,并说明它表示什么曲线。

4、 平面直角坐标系中,o为坐标原点,已知两点a(3,1),b( )若c满足 ,其中 ,求点c的轨迹方程。

5、 椭圆的中心是原点o,它的短轴长为 ,相应于焦点f( )的准线 与 轴相交于点a, ,过点a的直线与椭圆相交于p、q两点。

(1)求椭圆的方程;

(2)设 ,过点p且平行于准线 的直线与椭圆相交于另一点m,证明 ;

(3)若 ,求直线pq的方程。

试题答案

1、 解:因为 ,且a、m、n三点共线,所以 ,且 ,得n点坐标为

因为n点在椭圆上,所以即所以

解得2. 证明:设a( )、b( )( ),则c点坐标为( 、

因为a、f、b三点共线,所以 ,即

化简得

由 ,得

所以

即a、o、c三点共线,直线ac经过原点

3、 解:设 、 、则 、

∵ ∴

即又

即 (2) ∵ a、m、b三点共线

化简得 ③

将①②两式代入③式,化简整理,得

∵ a、b是异于原点的点 ∴ 故点m的轨迹方程是 ( )为圆心,以4. 方法一:设c(

由 ,且 ,

∴ 又 ∵ ∴

∴ 方法二:∵ ,∴ 点c在直线ab上 ∴ c点轨迹为直线ab

∵ a(3,1)b( ) ∴ 5. 解:(1) ;(2)a(3,0),

由已知得 注意解得 ,因f(2,0),m( )故

(3)设pq方程为 ,由

得依题意 ∵

∴ ①及 ③

由①②③④得 ,从而所以直线pq方程为

71 3178884
");