新人教版小学五年级数学下册教案范例精选4篇

网友 分享 时间:

【序言】由三一刀客最美丽的网友为您整理分享的“新人教版小学五年级数学下册教案范例精选4篇”学习资料,以供您学习参考之用,希望这篇文档资料对您有所帮助,喜欢就复制下载吧!

人教版小学数学五年级下册教案2021模板【第一篇】

教学内容:

教材第P50—51页“体积单位的换算”

教学目标:

1、结合实际活动,认识体积,容积单位之间的进率,会进行体积,容积单位之间的换算。

2、在观察、操作的过程中,发展空间观念。

教学重难点:

1、结合实践活动,认识体积、容积单位之间的进率,会进行体积、容积单位之间换算。

2、在观察、操作的过程中,发展空间观念。

教学过程:

一、创设情境激趣揭题

1、展示问题:

①常用的长度单位有那些?相邻两个单位间的进率是多少?

②常用的面积单位有那些?相邻两个单位间的进率是多少?顺式导入新课。

2、板书课题。

二、扶放结合探究新知

1、探究立方分米和立方厘米之间的进率。师出示一个棱长1分米和1厘米的正方体、提出问题。

2、探究立方分米和立方厘米之间的进率。

3、出示例题:“体积单位的改写”

4、学生交流后,引导学生小结。

三、反馈矫正落实双基

1、出示教材P51第一题

2、教材第51页“练一练”的第2题。

3、教材第51页“练一练”的第3题。

四、小结评价布置预习

1、引导学生进行全课小结。

2、布置课外预习:教材P54-55:有趣的测量。

2021春最新小学五年级数学下册教案【第二篇】

一、教学内容

1、因数和倍数

、5、3的倍数的特征

3、质数和合数

二、教学目标

1、使学生掌握因数、倍数、质数、合数等概念,知道有关概念之间的联系和区别。

2、使学生通过自主探索,掌握2、5、3的倍数的特征。

3、逐步培养学生的数学抽象能力。

三、编排特点

1、精简概念,减轻学生记忆负担。

三方面的调整:

A.不再出现“整除”概念,直接从乘法算式引出因数和倍数的概念。

B.不再正式教学“分解质因数”,只作为阅读性材料进行介绍。

C.公因数、公因数、公倍数、最小公倍数移至“分数的意义和性质”单元,作为约分和通分的知识基础,更突出其应用性。

2、注意体现数学的抽象性。

数论知识本身具有抽象性。学生到了高年级也应注意培养其抽象思维。

四、具体编排

1、因数和倍数

因数和倍数的概念

过去:用÷=表示能被整除,÷=表示能被整除。

现在:用=直接引出因数和倍数的概念。

(1)用2×6=12给出因数和倍数的概念。

(2)用3×4=12进一步巩固上述概念。

(3)让学生利用因数和倍数的概念自主发现12的其他因数。

(4)可引导学生利用一般的乘法算式×=归纳出因数和倍数的概念。

(5)说明本单元的研究范围。

注意以下几点:

(1)虽然不出现“整除”一词,但本质上仍是以整除为基础,因此,乘法算式中的乘数和积都必须是整数。

(2)因数和倍数是一对相互依存的概念,不能单独存在。

(3)注意区分乘法各部分名称中的“因数”和本单元中的“因数”的联系和区别。

(4)注意区分“倍数”与前面学过的“倍”的联系与区别。

例1(一个数的因数的求法)

(1)可用不同的方法求出18的因数(列出积是18的乘法算式或列出被除数是18的除法算式),但应引导学生有序思考。

(2)用集合圈表示因数,为后面求两个数的公因数作铺垫。

一个数的因数的特点

(1)因数是其自身,最小因数是1。

(2)因数个数有限。

(3)此结论通过例1和“做一做”中的特例通过不完全归纳法得出,体现了从具体到一般的思路。

例2(一个数的倍数的求法)

(1)求法:用该数乘任一非0自然数所得的积都是该数的倍数。

(2)用集合圈表示倍数,为后面求两个数的公倍数作铺垫。

做一做

与例1结合起来,提供了2、3、5的倍数,为后面探讨2、3、5倍数的特征作准备。

一个数的倍数的特点

(1)最小倍数是其自身,没有的倍数。

(2)因数个数无限。

(3)此结论通过例1和“做一做”中的特例通过不完全归纳法得出,体现了从具体到一般的思路。

、5、3的倍数的特征

因为2、5的倍数的特征在个位数上就体现出来了,而3的倍数涉及到各数位上的数字之和,较为复杂,因此后安排3的倍数的特征。本部分内容对于熟练掌握约分、通分、分数的四则运算有很重要的作用。

2的倍数的特征

(1)从生活情境“双号”引入。

(2)观察2的倍数的个位数,总结出2的倍数的特征。

(3)介绍奇数和偶数的概念。

(4)可让学生随意找一些数进行验证,但不要求严格的证明。

5的倍数的特征

(1)编排方式与2的倍数的特征类似。

(2)可进一步总结既是2的倍数又是5的倍数的特征,即10的倍数的特征。

3的倍数的特征

(1)强调自主探索,让学生经历观察――猜想――-猜想――再观察――再猜想――验证的过程。

(2)可任意选择一个数,用正面、反面的例子对结论进一步验证。

(3)也可对任一3的倍数的各位数调换位置,更深刻地理解3的倍数的特征。

3、质数和合数

质数和合数的概念

(1)根据20以内各数的因数个数把数分成三类:1、质数、合数。

(2)可任出一个数,让学生根据概念判断其为质数还是合数。

例1(找100以内的质数)

(1)方法多样。可以根据质数的概念逐个判断,也可用筛法。

(2)把握教学要求:知道100以内的质数,熟悉20以内的质数。

五、教学建议

1、加强对概念间相互关系的梳理,引导学生从本质上理解概念,避免死记硬背。

从因数和倍数的含义去理解其他的相关概念。

2、要注意培养学生的抽象思维能力

人教版小学数学五年级下册教案2021模板【第三篇】

教学目标:

1、能读懂条形统计图、折线统计图、扇形统计图,从中获取有效信息,体会统计在现实生活中的作用。

2、了解三种统计图的不同特点,能根据需要选择适当的统计图,直观、有效的表示信息。

3、让学生体会统计在现实生活中的作用,愿意合作与交流。

教学重难点:

了解三种统计图的特点与作用。

教学准备:

各种统计图、投影仪。

教学过程:

一、导入新课。

我们前一课认识了扇形统计图,谁能说出它特点?

指名回答。那么这一节课就学习在什么情况下要用什么样的统计图。

二、学习新课。

1、出示我国从第23届奥运会开始获得金牌,第24——28届奥运会我国获奖牌情况统计表。

2、让学生说一说从统计表中获得信息。

3、用投影仪出示折线统计图、条形统计图、扇形统计图。

4、分别提出教材中的三个问题,让学生们交流。

5、教师小结:折线统计图能明显的看出第24——28届奥运会我国获得奖牌数的变化情况,条形统计图能更明显的看出第28届奥运会我国获得的金牌数。扇形统计图能看出第28届奥运会我国奖牌的分布情况。

三、说一说。

让学生用自己的话说一说三种统计图的各有什么特点。指名回答。其他同学补充、评议。教师评价。

四、练一练。

在小组内交流分别用哪种统计图合适?并说出自己的理由。

五、实践活动。

交流课前收集到的各种统计图,体会三种统计图的特点和作用。

板书设计:

奥运会(统计图的选择)

折线统计图:明显地看出第24——28届奥运会我国获得奖牌数的变化情况。

条形统计图:更明显地看出第28届奥运会我国获得的金牌数。

扇形统计图:看出第28届奥运会我国奖牌的分布情况。

人教版小学数学五年级下册教案2021模板【第四篇】

教学内容:

书第50——51页,体积单位的换算,想一想、试一试第1、2题,练一练第1、2、3、4题。

教学目标:

1、知识与技能:通过探究、推导,使学生知道:1立方米=1000立方分米,1立方分米=1000立方厘米,1升=1000毫升。

2、过程与方法:能够正确进行单位间的换算。

3、情感、态度价值观:培养学生良好的思维习惯和与人合作的能力。

教学重点:

知道常用体积单位之间的进率并能正确运用。

教学难点:

体积单位与长度单位、面积单位的联系与区别。

教学准备:

棱长为1分米的正方体盒子和棱长为1厘米的小正方体若干个。

教学过程:

一、复习旧知

1、填空:30厘米=( )分米 5米=( )厘米

2平方米=( )平方分米 45平方厘米=( )平方分米

师:常用的长度单位之间的进率是多少?

常用的长度单位之间的进率是多少?

2、计算:

(1)一个长方体盒子,长5分米,宽4分米,高3分米,它的体积是多少?

(2)一个长方体水池,它的底面积是30平方米,高是2米,它的体积是多少?

二、探究新知

1、质疑:猜测一下体积单位之间的进率可能是多少?

可以用什么方法验证你的猜想?

2、师:我们是怎样推导出常用的面积单位之间的进率的?

3、探索立方分米和立方厘米之间的进率

(1)说一说:你准备怎样利用学具来操作。

(2)四人小组活动。

(3)抽生完整表述操作过程:1排摆10个,每层正好摆10排,也就是说,每层可以摆100个。高是1分米=10厘米,盒子里正好摆10层。

(4)师:如果用分米作单位,大正方体的体积是多少?

如果改用厘米作单位呢?

(5)师:由此你能得出什么结论?

据学生回答板书:1分米3=1000厘米3

师:1立方分米等于多少升?1立方厘米等于多少毫升?

你还能想到什么?

据学生回答板书:1升=1000毫升

4、探索立方米和立方分米之间的进率

(1)师:关于立方米和立方分米之间的进率,你有什么想法?

(2)四人小组交流。

(3)抽生汇报,师注重引导学生表述准确、完整:体积为1米3的正方体,它的棱长为1米;也可看成是棱长为10分米的正方体,它的体积是10×10×10=1000分米3,1米3 =1000分米3,1 m3 = 1000dm3。

三、新课小结

通过今天的学习,你有什么收获?

作业设计:

1、书第50页试一试第1题,独立完成。

2、书第51页试一试第2题,独立完成,引导学生比较。

3、书第51页练一练第1题,独立完成,集体订正。

4、书第51页练一练第2题

通过计算第三种包装比较合算。如果学生有其他的比较方式,只要合理,教师应给予肯定和鼓励。

5、书第51页练一练第3题

先让学生联系生活经验,对电视机包装箱上“60×50×40”这个数据信息进行解释,然后再让学生说说自己的想法并计算。体积是60×50×40=120000(立方厘米),也可以换算成120立方分米。

6、书第51页练一练第3题

先让学生独立计算,再说说是怎么想的,实际上就是求米高的水的体积。50×20×=1500(立方米)

板书设计:

体积单位的换算

30厘米=( )分米 5米=( )厘米

2平方米=( )平方分米 45平方厘米=( )平方分米

1分米3=1000厘米3 1米3=1000 分米3

1升=1000毫升 1m3=1000 dm3

16 37576
");