小学数学《面积单位的换算》教案(通用4篇)

网友 分享 时间:

【阅读指引】阿拉题库网友为您分享整理的“小学数学《面积单位的换算》教案(通用4篇)”范文资料,以供您参考学习之用,希望这篇文档对您有所帮助,喜欢就下载分享给大家吧!

面积单位间的简单换算【第一篇】

面积单位间的简单换算

教学内容:教科书第132页例4,“做一做”中的题目和练习三十的第5―9题。

教学目的:使学生进一步掌握面积单位间的换算的推想过程,加深对面积单位的认识。

教具:多媒体课件。

教学过程():

一、复习

1、让学生说一说如何计算长方形的面积。

2、说一说是如何推想的。。

5平方分米=(      )平方厘米    13平方米=(      )平方分米

二、新课

1、教学例4

教师用多媒体出示例4,指名学生读题,然后提问:“这道题已知什么?求什么?”

“这个桌面是什么形状的?”

“它的长是多少?宽是多少?”

“知道了桌面的长和宽,怎样求桌面的面积?”

然后让学生计算并指名说出计算结果和单位名称,教师板书:

120×55=6600(平方厘米)

教师接着再问:我们算出桌面的面积是6600平方厘米,把它折合成平方分米,应该怎样推想?最后教师写答案。

6600平方厘米=66平方分米

2、做例4下面的“做一做”的习题。

指名学生板演,其余做在练习本上,教师巡视,对学习有困难的学生及时帮助。

三、练习

1、做练习三十的第5题。

让学生独立做,集体订正。

2、做练习三十的第6题。

让学生独立做,找几名学生说一说推想过程

3、做练习三十的第7题。

这道题有三问,前两问让学生自己做,做第三问学生如果有困难,教师加以引导。

四、作业

练习三十的第8―10题。

单位换算!【第二篇】

单位换算大全!

关于单位制

(* 联系地址

物理常数和不确定度的资料

黄晨 *9月

复旦大学化学系表面化学实验室

eMailmorning_yellow@

一国际单位制(SI)和高斯单位制(CGS)的力学量纲和单位

力学物理定律在国际单位制(简称国际制记作SI)和高斯单位制(简称高斯制又称为厘

米克秒制记作CGS)

中具有相同的形式

并且它们都以长度

质量和时间作为基本量纲

所以所有的力学量都具有相同的量纲

另外

这两个单位之间的换算也相当方便都是10

的次方数

物理量长度质量时间频率力能量功率压强

量纲L

MTT

?1

LMT

?2

L2

MT?2L2MT?3L?1MT?2

国际制单位高斯制单位m(米)

cm(厘米)kg(

千克)g(克)s(

秒)s(秒)Hz(赫兹)Hz(赫兹)N(牛顿)dyn(达因)J(焦耳)erg(耳格)

erg/s

W(瓦特)

dyn/cm2Pa(帕斯卡)

表1力学量纲和单位

换算关系1m = 102cm1kg = 10g

--

1N = 10

dyn1J = 10erg1W = 107erg/s1Pa = 10dyn/cm2

二静电制(CGSE)量纲和单位

高斯制在电磁学中具两套单位制一套以库仑定律为基础称为静电制记作CGSE它是电动力学中最常用的单位制另一套以安培定律为基础称为电磁制记作CGSM它是国际单位制的理论基础

静电学中最基本的定律是库仑定律而该定律在国际制和静电制中有着不同的形式国际制的形式是

qqF=122(2-1)

4πε0r

这里ε0是真空中的介电常数其数值为×10?12C2/Nm2而电磁制则是

qqF=122(2-1')

r

所以量纲和单位都有很大区别在国际制中电流是基本量纲而由公式(2-1')可以看出静电制不需要新的基本量纲为此静电制电量的量纲就是L3/2M1/2T?1它具有一个新的单位esu称为静电单位电量(或称静电库仑)其值为1dyn1/2cm

不同单位制中的单位可以互相转换这里给出从esu转换成库仑(C)的方法(1) 设1C = xesu

(2) 根据公式(A-1)当r = 1mq1 = q2 = 1C时F = ×109N

(3) 把r = 1m = 102cmq1 = q2 = xesuF = ×109N = ×1014dyn代入公

式(A-2)得x = ×10

9

(4) 得出结论

1C = ×109esu[1]1esu = ×10?10C

公式(2-2)和(2-2')是国际制单位和高斯制单位相互转换的基本公式

注[1]

由于等式两边采取的单位制不同所以这样的等号在数学上是不严格的

(2-2)(2-2')

三电磁制(CGSM)量纲和单位

静磁学中最基本的定律是安培定律

国际制的形式是?IIlF=012

2πd

其数值为4π×10?7Nm/A

2

F=

(3-1)

这里?0是真空中的导磁率而电磁制则是

2I1I2l

(3-1')

d

因此电磁制也不需要新的基本量纲

电流的量纲就是L1/2M1/2T?

1电磁制给予一个新的单位emu称为电磁单位电流(或称静磁安培)其值为1dyn1/2emu和A的转换公式为

1A = (3-2)1emu = 10A(3-2')物理量

电量

电流电位电阻电容电感磁感应通量磁感应强度磁场强度

国际制

量纲TIIL2MT?3I?1L2MT?3I?2L?2M?1T4I2L2MT?2I?2L2MT?2I?1MT?2I?1L?1I

静电制

电磁制

量纲

L1/2M1/2L1/2M1/2T

?1

L3/2M1/2T?2

LT?1L?1T2LL3/2M1/2T?1L?1/2M1/2T?1L?1/2M1/2T?1

单位emu?semuerg/emu?scm/s(cm/s2)?1

cmMxGsOe

单位

量纲单位

esuC(库仑)L3/2M1/2T?

1

esu/sA(安培)L3/2M1/2T?2

erg/esuV(伏特)L1/2M1/2T?1

?(欧姆)L?1T(cm/s)?1

cmLF(法拉)

H(亨利)L?1T2(cm/s2)?1

L1/2M1/2-Wb(韦伯)

-T(特斯拉)L?3/2M1/2

A/m-L1/2M1/2T?2

表2电磁学物理量的量纲和单位

四量纲分析法

在国际制电流单位安培是根据安培定律来定义的所以它的前身是电磁制单位由于存在这几个换算公式(1) 1m = 100cm(2) 1kg = 1000kg(3) 1A = 所以可以根据国际制单位的量纲来确定换算比例如果国际制单位的量纲是LxMyTzIw那么它和电磁制单位的换算关系就是

(4-1)1国际制单位 = 10^(2x+3y?w)电磁制单位

例如国际制中磁强度单位T的量纲为MT?2I?1那么它和电磁制单位Gs的换算关系就是1T = 104Gs

静电制单位和电磁制单位的换算关系可以通过下面的公式得到

c=

1ε0?0

(4-2)

在静电制中4πε0 = 1在电磁制中?0/4π = 1而c在两个单位制中都是×1010

cm/s所以静电制单位和电磁制单位的换算比例总是真空光速(×1010)

的若干次方如果静电制单位和电磁制单位的量纲之比为L?nTn

那么两者的换算关系就是

(4-3)1静电制单位 = (×1010)n电磁制单位

例如国际制中电容单位F的量纲为L?2M?1T4I2要把它转化为静电制单位cm首先要经过电磁制单位cm/s

2关系是1F(SI) = 10?9(cm/s2)?1(CGSM)由于电容在电磁制中的量纲L?1T2和静电制中的量纲L之比为L?2T2所以两个单位值的比例应该是1(cm/s2)?1(CGSM) =×1020cm(CGSE)最后1F(SI) = ×1011

cm(CGSE)

物理量电量电流电位电阻电容电感磁感应通量磁感应强度磁场强度

国际制静电制××109esu/s

1V

×10?

3erg/esu

×10

?12(cm/s)?11?

1F

××10?12(cm/s2)?11Wb-1T-

1A/m-表3电磁学物理量的单位换算(注1Mx/cm2 = 1Gs = 4πOe = 1emu/cm)

电磁制?

/emu

?

s

109

cm/s

10?9(cm/s2)?1

109cm10

8Mx104Gs4π×10?3Oe

五单位的转化和不确定度

国际制单位和高斯制单位(以静电制为代表)通常都相差一个系数这个系数由物理常数来确定例如由公式(A-3)给出的换算关系可以写成

c

1C=esu(5-1)

10cm/s

这就意味着两个单位的换算系数同真空光速联系在一起如果真空光速的测量值有所改变那么换算系数就会变化这就在单位制换算中出现了不确定度好在国际单位制中真空光速具有精确值(即定义秒以后用真空光速来定义米)所以这种不确定度在国际制和高斯制之间并不存在但是在某些单位之间例如能量单位J和eV就相差一个基本电荷e/C该常数的不确定度就是这两个单位比值的不确定度根据这个道理同一物理常数在不同单位下具有不一样的不确定度例如基本电荷用C(库仑)时不确定度为用eV/V时就不具有不确定度又如普朗克常数以J?s为单位时不确定度为而用eV?s时不确定度就会减小到

六自然单位制

1

自然单位制()是量子场论中的常用单位制它把真空光速(c)和普朗克常数(h)定义为所以有

~)=mc2(=2πhν)=2πν~=2πνm=mc(=2πh

第一文库网ν(6-1)

(6-2) [质量] = [动量] = [能量] = [长度]?1 = [时间] ?1

自然单位制只有一个基本量纲

质量这就使得四维时空坐标具有同样的量纲(质量的倒数

)四维动量-能量坐标也具有同样的`量纲(质量

)

并且这两个坐标之间存在倒易关系自然单位制中最常用的单位是eV国际单位制的mskg和eV

的换算公式为

?c??e??c?1kg=????eV1eV=??

m/sCm/s??????

?1

?1

2

?1

?2

e

kgC

(6-3)(6-4)

1s?1

h?e??h?e?1=s??eV1eV=??J?s?C?J?sC??

?1

?1

hc?e?c?e?1?h

(6-5)1m?1=????eV1eV=????m

J?sm/s?C?J?sm/sC??

在目前的物理常数表(CODATA )中基本电荷(e)的不确定度分别是所以kg和eV比例的不确定度也应该是再来看s?1和eV以及m?1和eV的比例普朗克常数(h)的不确定度是

由于它和基本电荷之间存在联系即约瑟夫森常数(KJ

)所以这两个比例的不确定度不是 + = 而是KJ的不确定度约瑟夫森常数的定义是

2eeKJ==(6-6)

hπh

所以公式(6-4)和(6-5)最好改写成以下的形式

1s1m?1

另外

?1

KJ1?K?

=?J?eV1eV=π?=s?1π?Hz/V?Hz/V

?1

?1

?1

(6-4')(6-5')

用公式

(6-3)

KJc?KJ??c?=?m?1??eV1eV=π??πm/s?Hz/V??m/s?Hz/V1

因此有

自然制还把电常数和磁常数定义为

1

?1

ε0mm3kg

=

=22

F/mFCs

ε1?hc?

?(6-4')和(6-5')代入可得0=2?没有和eV

有关的项这说明电量是无量纲

?

F/mC?J?sm/s?

数并且有

?hc?hc??ε0?ε0

C=?????(6-7)?()1()=??

F/mJ?sm/sF/mJ?sm/s????

根据CODATA 2002的数值国际制和自然制的单位有如下的换算关系

(6-8)1m = (42)×106eV?1

?1?7

(6-8')1eV = (16)×10m

(6-9)1kg = (49)×1035eV

(6-9')1eV = (15)×10?36kg

(6-10)1s = (12)×1015eV?1

(6-10')1eV?1 = (55)×10?16s

(6-11)1C = (16)×1018()

(6-11')1() = (45)×10?19C

以上的换算关系都包含了一定的不确定度大约在左右

在自然单位制中

速度和角动量没有量纲笔者建议它们的基本单位分别命名为爱因斯坦(Einstein)和普朗克(Planck)这样就有

1() = 1 Einstein = 299792458m/s(6-12)

(6-13)1() = 1 Planck = (11)×10?34J?s

七原子单位制

原子单位制()通常用在分子的计算中在国际单位制中多电子原子体系的定态薛定

鄂方程写成

??N

rrrre2?Z1??2N2?rr??(???Ψr,r,L,r=EΨr,r,L,r(7-1)????∑∑∑i12N12N)?πε2m4rei=10??i=1i1≤i

e2

在原子单位制中令h=me==1方程就改写成

4πε0?12Z?N????i??∑?

2ri??i=1?

很多系数都被消除了

具有不同的意义

?rr?rrrr?+∑1?()(Ψr,r,,rEΨr,r,,rL=L(7-1')

N12N)?1≤i

ij???

被消除的还有各个物理量的量纲这使得同一数值在不同场合下

mee2

(动量)=(速度)=1()=h(角动量)=me(质量)=

4πε0h4πε0h

me?e2?me2?e2?4πε0?4πε0?

??(能量)=4?(力)?2(长度)=?2?(时间)=2????meeme?e?h?4πε0?h?4πε0??

根据公式(7-2)可以得到原子单位和各种国际制单位的换算关系

1()= 1 Planck = (18)×10?34J?s(角动量)

= (16)×10?31kg = (24)×10?4amu(质量)(笔者建议该质量单位命名为汤姆森(Thomson))

= (72)m/s = α Einstein(速度)(α为精细结构常数)= (34)×10?24kg?m/s(动量)

= 1 Bohr = (18)×10?11m(长度)= (16)×10?17s(时间)

(笔者建议该时间单位命名为海森堡(Heisenberg))

= 1 Hartree = (75)×10?18J = (23)eV(能量)= 1 Hartree/Bohr = 7225(14)×10?8N(力)

2

3

2

2

3

e2

(7-2)

(7-3)

附录A能量换算表

HartreeeV

kCal/molkJ/molcm?1?hcGHz?h

Hartree1

×10?×10?×10?×10?×10?7

×10?×10?×10?×10?6

kCal/

×10?×10?5

kJ/

×10?×10?4

cm?1?×

×10?2

GHz?××××

附录B常用物理常数表(由CODATA 的推荐值整理而得)

物理量真空光速磁常数电常数真空特征阻抗冯-克利青常数精细结构常数约瑟夫森常数基本电荷普朗克常数里德堡常数玻尔磁子玻尔半径电子静止质量质子静止质量中子静止质量电子静止质量原子质量单位阿佛加德罗常数法拉第常数玻尔兹曼常数摩尔气体常数牛顿引力常数标准重力加速度标准大气压热功当量

符号c

数值299 792 458

187 82...[10] 313...[11] 690 02...25 449(86) 062 1655(96)1/ 999 11(46)[12]

978 79(41) 789 96(12) 176 53(14)[13] 204 41(42) 0693(11)[14] 571 68(18)10 973 525(73) 6923(12)[15] 009 49(80)[16] 772 108(18)[17] 799 0945(24) 998 918(44)[18] 276 466 88(13) 029(80) 664 915 60(55) 360(81) 3826(16)[19] 538 86(28)[20] 043(80) 1415(10)[21]96 (83)[22] 5576 72(26) 6505(24) 472(15)(10) 65101

国际制m/s×107H/m×10?12F/m

?-?-/

×1014Hz/V

-×10?19C-×10?34J?s×10?34J?sm?1eV×10?24J/T×10?11m×10?4×106eV/×106eV/×106eV×10?31kg×10?27kg×106eV×1023mol?1

C/mol-×10?23J/KJ/mol?K×10?11m3/kg?s2

m/s2PaJ

高斯制×102cm/s4π(CGSM)1/4π(CGSE)×109cm/s×10?10(cm/s)?1

×109cm/s×10?8(cm/s)?1

/

×106emu/erg×1017esu/erg?s×10?20emu?s×10?10esu×10?27erg?s×10?27erg?s×10?2cm?1

-×10?21erg/Gs×10?9cm×10?4

-/

/×10?28g×10?24g×1023mol?1×10?1emu?s/mol×1014esu/mol×10?16erg/K×107erg/mol?K×10?8cm3/g?s2×102cm/s2×10dyn/cm2×107erg

?ε0Z0RK[1]

α [2]KJ[3]eh[4]R∞[5]R?hc

?[6]a0[7]me/amum?c2mp/amum?c2mn/amum?c2meamuamu?c2NAF[8]kBR[9]GgatmCal

[1]RZ0K=

2αα=

e2

[2]4πε0hc[3]K2e

J=

h[4]h=

h

2π[5]Rme??2

∞=4πh3c?e2

???4πε0

??

[6]?=

eB2me

[7]a24πε0

0=m?

ee2

[8]F=eNA[9]R=kBNA

以上公式均为物理量的定义公式

[10]ε10=

?2

0c[11]Z0=?0c[12]α=Z02RK[13]e=4ε0

KJ[14]h=

2e

KJ

[15]R∞

?hc2cRe=∞

KJ[16]?cα2e

B=

8πR∞

[17]aα0=

4πR∞[18]m=

16ε0R∞

eαK2

Jm2[19]e?ce

=4cR∞

α2

KJ[20]amu=

me

meamu[21]/mol

A=

amu

[22]F=

cα2KJ(meamu)(/mol)4R∞

以上公式均为物理量数值的推算公式

面积单位间的简单换算教案【第三篇】

教学内容:教科书第132页例4,“做一做”中的题目和练习三十的第5 9题。

教学目的:使学生进一步掌握面积单位间的换算的推想过程,加深对面积单位的认识。

教具:多媒体课件。

教学过程:

一、复习

1、让学生说一说如何计算长方形的面积。

2、说一说是如何推想的。

5平方分米=( )平方厘米 13平方米=( )平方分米

二、新课

1、教学例4

教师用多媒体出示例4,指名学生读题,然后提问:“这道题已知什么?求什么?”

“这个桌面是什么形状的?”

“它的长是多少?宽是多少?”

“知道了桌面的。长和宽,怎样求桌面的面积?”

然后让学生计算并指名说出计算结果和单位名称,教师板书:

120×55=6600(平方厘米)

教师接着再问:我们算出桌面的面积是6600平方厘米,把它折合成平方分米,应该怎样推想?最后教师写答案。

6600平方厘米=66平方分米

2、做例4下面的“做一做”的习题。

指名学生板演,其余做在练习本上,教师巡视,对学习有困难的学生及时帮助。

三、练习

1、做练习三十的第5题。

让学生独立做,集体订正。

2、做练习三十的第6题。

让学生独立做,找几名学生说一说推想过程

3、做练习三十的第7题。

这道题有三问,前两问让学生自己做,做第三问学生如果有困难,教师加以引导。

四、作业

练习三十的第8 10题。

单位换算练习题【第四篇】

单位换算练习题

常用单位间的进率:

长度单位:千米 1000米 10分米 10厘米 10毫米

面积单位:公顷 10000平方米 100平方分米 100平方厘米

重量单位:吨 1000千克 1000克

货币单位:元 10角 10分

一、高级单位×进率低级单位:

米= ( )分米 平方米=( )平方分米 吨=( )千克

千克=克 米=()毫米 千克=()克

吨=()千克米=()厘米平方千米=()公顷

二、低级单位÷进率高级单位:

510米=( )千米 3650克=( )千克 360平方米=( )公顷

504厘米=()米 600千克=( )吨 7分=( )元

19克=( )千克 78分米=( )米 6平方分米=()平方米

三、复名数改写成单名数:

如:3米40厘米=()米想:把3米写在整数部分,把40厘米改写成米,合起来就是米。

5米16厘米=( )米 5千克700克=( )千克 3千米50米=()千米

10米7分米=()米 7元4角2分=( )元 4吨50千克=( )吨

3平方米7平方分米=( )平方米 4米5分米6厘米=( )米

四、单名数改写成复名数:

如:米=(2)米(5)厘米想:整数部分是2米,把米改写成5厘米。

吨=()吨( )千克 元=( )元()角

平方米=( )平方米()平方分米千克=()千克()克

米=()米()厘米 公顷=()公顷()平方米

生活中的小数

一、填一填:

13厘米=( )米 ()平方千米=24公顷

()厘米= 米 千克=()克

4米17厘米=( )米3千克165克=()千克

平方分米=()平方厘米 435克=()千克

千克=()千克()克 米=()米()分米

吨=()吨()千克()米=2米3分米

二、比一比:

10米( )900厘米 千克()284克 5米32厘米()米

千米()1千米480米 3分米( )300毫米 700毫米( )70米

4吨( )499千克 600千克( )6吨 10千克( )100克

米()3米6分米2厘米 1吨800千克( )1080千克

三、解决问题:

1、小华3分钟步行210米,汽车每分钟的`速度是小华步行速度的9倍,汽车每分钟行多少千米?

2、两个钻井队,第一队钻井1900米,比第二队少钻200米,两个队共钻井多少千米?

3、一台机器重800千克,有30台这样的机器用载重5吨的汽车来运,需几次运完?

4、水果店运来苹果340千克,梨260千克,运来苹果和梨的总重量是桔子的6倍,运来桔子多少千克? 如果在你的训练中出现了错误,请反思后再做如下集中练习:

16 3316947
");