小学数学《圆柱的表面积》教学设计【推荐4篇】
【导言】此例“小学数学《圆柱的表面积》教学设计【推荐4篇】”的教学资料由阿拉题库网友为您分享整理,以供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载支持吧!
2017年圆柱的表面积教案设计【第一篇】
教学内容
教材40页、41页例1、例2、例3及做一做,练习十第2-5题。
素质教育目标
(一)知识教学点
1.理解圆柱的侧面积和表面积的含义。
2.掌握圆柱侧面积和表面积的计算方法。
3.会正确计算圆柱的侧面积和表面积。
(二)能力训练点
能灵活运用求表面积、侧面积的有关知识解决一些实际问题。
教学重点
理解求表面积、侧面积的计算方法,并能正确进行计算。
教学难点
能灵活运用表面积、侧面积的有关知识解决实际问题。
教具学具准备
1.教师、学生每人用硬纸做一个圆柱体模型。
2.投影片。
教学步骤
一、铺垫孕伏
1.口答下列各题(只列式不计算)。
(1)圆的半径是5厘米,周长是多少?面积是多少?
(2)圆的直径是3分米,周长是多少?面积是多少?
2.长方形的面积计算公式是什么?
3.教师出示圆柱体模型,指同学说出它有什么特征?
二、探究新知
1.利用圆柱体模型的侧面展开图,引导学生概括出圆柱侧面积的计算方法。
(1)让学生观察议论:圆柱的侧面展开图(是长方形)的长与宽分别和圆柱底面周长与高的关系。
(2)引导学生概括出:因为长方形的面积等于长×宽,而这个长方形的长等于圆柱的底面周长,宽等于圆柱的高,长方形的面积就是圆柱的侧面积,所以圆柱的侧面积等于底面周长乘以高。
2.教学例1
(1)出示例1,指同学读题,找出已知条件和所求问题。
学生独立解答,并把计算步骤填在课本50页例1下面的空白处,然后订正。
板书:3。14×0。5×1。8
=1。75×1。8
≈2。83(平方米)
答:它的侧面积约是2。83平方米。
(2)反馈练习:完成做一做41页第1题。
学生独立解答,然后订正。
3.教学
(1)教师说明:圆柱的侧面积加上两个底面积就是。
(2)让学生利用圆柱体模型展开图进行比较、区别,从而使学生清楚:是指圆柱表面的面积,是侧面积加上两个底面积,而侧面积是指圆柱侧面的面积;表面积包含着侧面积。
4.教学例2
(1)投影片出示例题2、圆柱的几何图形和表面积的。展图。
(2)指同学读题,找出已知条件和所求问题。
(3)让学生观察圆柱表面积的展开图,并小组议论:让学生理解圆柱表面积的组成部分,再按顺序说出求表面积的具体过程。具体计算由学生完成。
(4)指学生板演,其他同学在练习本上做,并把计算结果填在书上。
教师巡视指导,注意检查学生的计算结果和计量单位是否正确。
做完后订正,订正时让学生说出有关的计算公式。
(5)反馈练习:完成做一做第2题。
指一名学生在小黑板上做,其他在练习本上做,然后订正,订正时让学生讲解题方法。
5.教学例3
(1)出示例3,指名读题,找出已知条件和所求问题。
(2)教师提示:解答这道题应注意什么?
启发学生说出:这道题是求做这个水桶要用铁皮多少平方厘米。实际上是求这个圆柱形水桶的表面积。题里告诉我们的“一个没有盖的圆柱形铁皮水桶”,计算时就是用侧面积加上一个底面积。
(3)学生在练习本上做,教师巡视指导,注意检查学生的计算结果。如果发现计算结果是1800平方厘米的让该生上黑板上做。
(4)订正,让板演的学生讲解题的思路和计算结果取近似值的方法。
(5)教师说明:这里不能用“四舍五入”法取近似值。在实际中,制作水桶使用的材料要比计算得到的数多一些,这样才能保证原材料够用。那么保留整百平方厘米时,十位上即使是4或比4小,也要向前一位进1。这种取近似值的方法叫做进一法,所以这题的计算结果应是1900平方厘米。
(6)“四舍五入”法与“进一法”有什么不同。
通过比较,使学生明白:“四舍五入”法在取近似值时,看要保留位数的后一位,是5或比5大的舍去尾数
圆柱的表面积教学设计【第二篇】
教学目标
1.认识掌握圆柱各部分名称,建立圆柱体空间概念;
2.掌握圆柱体侧面积、表面积的计算方法,并能具体应用。
教学重点和难点
1.教学重点:推导圆柱体侧面积的计算方法。
2.教学难点:圆柱体侧面积公式的推导过程。
教学过程设计
(一)复习准备
师:我们已经学习了不少几何图形。现在看老师手里拿的是什么图形?
生:长方形。
师把长方形贴在黑板上。
师:面积如何求?
生:长方形面积=长×宽。(师板书)
师又拿出正方形,问相同的问题,然后把这个正方形贴在长方形旁边。再拿出圆形。
师:圆的面积和周长公式是什么?给什么条件能求出圆的面积和周长?
然后把圆形贴在长方形上面。再出一些练习题进行圆面积和周长的计算。强调计量单位。
师又拿出长方体、正方体。当拿出圆柱体时,同学们都能回答是圆柱体。接着让他们举一些日常生活中经常见到的圆柱形物体。再让他们拿出自己事先准备的圆柱体(如果提出似是而非的问题时,先不要进行讨论。)这时老师也拿出一些实物:手电筒里的反光罩、罐头盒、小鼓、印章、烟囱的半个拐脖,问这些实物叫不叫圆柱体?为什么不叫圆柱体?
师:今天我们就来学习一种新的形体——圆柱体。(板书课题——圆柱)
(二)学习新课
1.圆柱体的认识。
师:现在找一个同学到前面摸一摸圆柱体有哪几个面。(指名上前摸。)
生:上、下两个面和周围一个面。
师:上、下两个面是什么形状?它们的面积大小怎样?
生:上、下两个面是圆形,面积相等。
师:我们把圆柱上、下两个面叫做底面。(板书:底面)
师:周围的这个面是个曲面。我们把周围的这个面叫做侧面。(板书:侧面)
师:我们把一个圆在平面上滚动一周,痕迹是一条线段。如果把这个圆柱在平面上滚动一周,它的侧面留下的痕迹将是一个什么形状?同学们可以自己用手中的学具动手滚一下,能体会出是一个什么形状?
生:是一个长方形。
师演示:将圆柱体侧面展开得到一个长方形。(与黑板贴的长方形一样大。)
师接着拿出两个高矮不一样的圆柱体。
师问:为什么有高有矮呢?由什么决定的?
生:由高决定的。
师:什么是圆柱的高呢?(板书:高。写在长方形宽处。)看看书上是怎么讲的。(看书第50页,找同学回答。)老师在圆柱侧面上画一条垂直于底面的线段,这条线段就是这个圆柱的高。
师出示投影,让学生指出高。
师:圆柱的高有多少条?
生:无数条。
师:高都相等吗?
生:都相等。
师:现在我们来回答刚才举的一些物体不是圆柱体的原因。(先让同学们说自己手中的,最好让本人说,然后再说老师手中的'实物。)
师:我们讲的圆柱体都是直圆柱。
2.圆柱的侧面积。
(1)推导公式。
师:圆柱侧面图是一个长方形。下面同学们四人一组对照手中的圆柱体学具进行讨论。
讨论题目是:
a:这个长方形与圆柱体有哪些关系?
b:你能推导出圆柱体侧面积计算方法吗?
然后学生汇报讨论结果。
生:这个长方形的长等于圆柱体的底面周长,宽等于圆柱的高,长方形面积等于圆柱的侧面积。从而得出;圆柱体侧面积=底面周长×高。用字母公式表示为:S侧=Ch。
老师板书公式。
(2)利用公式计算。
例1一个圆柱,底面的直径是0.5米,高是1.8米,求它的侧面积。(得数保留两位小数)
老师在黑板上板演。
下面同学们进行练习。投影练习题:
①一圆柱底面半径是5厘米,高5厘米,求侧面积。
②一圆柱底面半径是2分米,高是直径的2倍,求它的侧面积。
③一圆柱底面周长是12厘米,高12厘米,求它的侧面积。
师:你能知道第③题圆柱侧面展开图是什么图形吗?
3.圆柱的表面积。
师在课题“圆柱”后面接着写“的表面积”。
(1)推导公式。
师:同学们已经学会求圆柱的侧面积。如果求这个圆柱的表面积,你会求吗?(老师同时演示圆柱体平面展开图,让同学们进行讨论。)
生汇报讨论结果,老师板书公式:
S表=S侧+2S圆
(2)利用公式计算。
(投影出示)
例2计算圆柱体的表面积(见下图)。(单位:厘米)
同学说思路,老师板书,注意每一步结果写计量单位。
解①侧面积:2×3.14×5×15=471(平方厘米)
②底面积:3.14×52=78.5(平方厘米)
③表面积:471+78.5×2=628(平方厘米)
答:它的表面积是628平方厘米。
例3一个没有盖的圆柱形铁皮水桶,高是24厘米,底面直径是20厘米。做这个水桶要用铁皮多少平方厘米?(得数保留整百平方厘米。)
同学说思路,列式。老师把正确的解答用投影打出来。
(1)水桶的侧面积
×20×24=1507。2(平方厘米)
(2)水桶的底面积
×(20÷2)2
=×102
=×100
=314(平方厘米)
(3)需要铁皮
+314=≈1900(平方厘米)
答:做这个水桶要用铁皮1900平方厘米。
小结:今天我们学习了哪些知识?(指名回答)下面我们来检查一下,这节课谁学习得最好?
(三)巩固反馈
(1)看书第54页第1题。
(2)投影,指出下面圆柱体的高是几?
(3)有一节直径10厘米的烟囱,长3米。这节烟囱用铁皮多少平方米?(只列式)
(4)一种轧道机,后轮直径米,长米。如果后轮每分钟转动6周,每分钟可轧路面多少平方米?(只列式)
(5)做一对无盖水桶,要求底面半径15厘米,高4分米。至少需用铁皮多少平方分米?(结果保留一位小数。)
(6)一种圆柱形小油漆桶,底面周长厘米,高20厘米。每个桶用铁皮多少平方分米?(四人讨论后口头回答。)
学生做,老师巡视,找几个同学把题写在玻璃片上,然后全体订正。
思考题:
(1)你要做一个圆柱体,先确定什么条件?你是怎样做的?
(2)我们在学习圆面积时,用两个完全一样的圆拼成一个近似长方形的方法推导出圆面积的公式,你能用这种方法推导出求圆柱体的表面积的另外一种计算方法吗?并用此方法做第(6)题,比较哪种方法简便?
课堂教学设计说明
本节课的教学设计分三个层次。
第一层次,使学生认识圆柱体底面、侧面和高。通过让学生观察实物和教具,以及插图和自己举日常生活中的实例,并让学生亲自动手摸一摸、看一看,使学生能准确地掌握圆柱体的特征。
第二层次,推导圆柱体的侧面积计算公式和表面积计算方法。
首先让学生讨论圆柱侧面展开的这个长方形与圆柱之间的关系。老师用圆柱体在黑板上贴有长方形处滚动一周,使学生了解到这个长方形的长就是底面周长,长方形的宽就是这个圆柱的高,从而用已学过的长方形面积公式很自然地推导出求圆柱体的侧面积公式。在这个基础上再加上两个圆面积,引导学生理解圆柱表面积的意义,从而总结出求圆柱的表面积的计算方法。使学生认识到立体转平面、形变量不变的辩证关系,培养同学们的观察分析能力。
第三层次是针对本节课所学知识设计的一些联系实际的应用题。安排有:只有侧面的圆柱形;只有一个底面的圆柱形;两个底面都有的圆柱形。同时计量单位有所不同。这样培养学生认真审题的好习惯,提高学生灵活应用能力,有利于发展学生的空间概念。
圆柱的表面积教学设计【第三篇】
教案背景:
冀教2011课标版小学数学六年级下册第四单元
教学课题:
圆柱的侧面积。
教材分析:
本节内容是学生学习了长方体与正方体的表面积后,在充分理解了表面积的含义的基础上展开的。圆柱的表面积是它的侧面积与两个底面面积的和,其中侧面积是新知识,底面积(即圆的面积)是学生学过的。所以侧面积计算方法的推导是本节课的难点,掌握侧面积的计算方法是本节课的`重点。教材选用了来自现实生活中的问题,通过想象和操作活动,使学生知道圆柱的侧面沿着高展开后可以是一个长方形(或正方形),从而探索出圆柱侧面积的计算方法。在此过程中,学生把曲面转化成平面,开展了一系列的推理活动,空间观念和思维能力能够得到锻炼。
教学目标:
1、使学生理解和掌握圆柱体侧面积的计算方法,能正确运用公式计算圆柱的侧面积。
2、培养学生观察、操作、概括和思考的能力,以及灵活地分析、解决实际问题的能力。
3、培养学生的合作意识,让学生体验出探索、发现的快乐,激起热爱数学的情感。
教学重点:
圆柱侧面积的计算。
教学难点:
圆柱体侧面积计算方法的推导。
教法运用:
本节课我采用操作和演示、讲练相结合的教学方法。通过直观演示和实际操作,引导学生观察、思考和探索圆柱侧面积的计算方法;同时将直观和抽象、新授和练习有机地融为一体,较好地突出教学重点、突破教学难点。
学法指导:
采取引导-放手-引导的方法,鼓励学生积极、主动地探求新知,运用化曲为平的方法推理发现侧面积的计算方法。
教具准备:
圆柱体教具、多媒体课件。
学具准备:
圆柱体纸筒、圆柱体物体、长方形纸、剪刀。教学过程:
一、复习导入,引入新知
1、复习圆柱体的特征
师:上节课,我们认识了圆柱,对圆柱体有了更深的理解,谁来说说它的特征? (指明学生回答后,课件动画展示同时师生小结)
- 1
四、课堂小结
1、本节课你有何收获?
2、教师小结:在解答实际问题前一定要先进行分析,灵活运用,选择合适的方法。
五、课后作业
应用本节课学到的知识,你会求圆柱的表面积吗?同学之间相互交流,试着推一推圆柱的表面积公式吧!附:板书设计
圆柱的侧面积=底面周长×
高→S侧=ch ↓
↑
↑长方形面积=
长
×
宽
教学反思
这节课,我在学生的认知发展水平和已有的知识经验基础上,深入钻研教材,引导学生合作探究,动手动脑,使学生学有所获。通过教学有如下感悟:
一、数学教学要注重数学思想和数学方法的渗透。
在本节课的教学中,我注重给学生渗透“转化”的数学思想方法,化曲面为平面,让学生经历观察、思考、操作等环节。课上我尽量让孩子们自己探索、发现。
二、重视学生的合作意识和实践能力的培养。
在教学圆柱侧面积计算方法时,我没有拘泥于教材上把侧面转化为长方形这一思路,而是放手学生合作探究:能否将这个曲面转化为学过的平面图形?鼓励学生大胆猜想和实验,把圆柱形纸筒剪开,结果学生根据纸筒的特点和剪法分别将曲面转化成了长方形、正方形、平行四边形等平面图形。通过观察和思考,最终都探讨出了侧面积的计算方法。在组织学生合作学习中,较好地培养了学生的合作探究能力。
三、合理利用现代化教学手段辅助教学。
侧面积计算公式的推导是本届的难点,在教学中,我适时利用了多媒体课件辅助教学,取得了较好的效果。直观形象的图片展示,不仅有利于学生审题,而且提高了课堂效率。
圆柱的表面积教学设计【第四篇】
教学目标:
1、通过动手操作,认识圆柱的展开图,理解圆柱侧面积和表面积的含义。
2、探索和掌握圆柱侧面积和表面积计算方法,并能解决生活中相应的实际问题。
3、进一步培养学生的动手操作能力,发展学生的空间观念。
教学重点:
圆柱体的表面积公式的推导。
教学难点:
圆柱体侧面积公式的推导
教学过程:
活动一:
教师出示喝水用的杯子,提问是什么形状?
进一步告诉学生,这个杯子的底面直径是4厘米,高是10厘米米,你能提出什么数学问题?
学生思考并提出数学问题。
活动二:
1、教学圆柱体表面积的意义
教师:求“做一个这样的圆柱形杯子,至少需要多少纸铁皮”实际上是求什么?
学生通过思考得出:求需要多少铁皮,也就是求圆柱体的表面积。
教师板书课题。
请同学们观察手中的圆柱体,想一想圆柱的表面积包括哪些面的总面积?
概括:圆柱的两个底面面积加一个侧面面积就是圆柱体的表面积
板书:侧面积+一个底面积×2=表面积
2、引导学生探究圆柱体侧面展开图
⑴设疑:我们已经会求什么面的面积?还有什么面的面积不会求?
⑵引导:想一想,能否将这个曲面转化成我们学过的平面图形?
⑶小组合作进行探究。
⑷小组汇报交流研究成果。
3、探究圆柱体侧面积计算方法
教师:请各小组研究一下圆柱侧面展开得到的长方形的长和宽与圆柱的哪些部分有关系,有什么样的关系。想一想圆柱的侧面积应该如何计算?
在学生交流、比较,完善,形成结论:圆柱的`侧面积=底面周长×高。
教师:你能求出做这个圆柱形杯子需要多少铁皮吗?
学生通过讨论明确解题思路:求需要多少铁皮,就是求这个圆柱的表面积。表面积=侧面积+底面积×2。然后尝试独立完成,并进行交流。
活动三:
课件出示闯关题,让学生进行抢答。
活动四:
1、请同学谈收获
2、教师小结:
今天同学们的表现让我感到很高兴:面对新的问题,不是等着老师讲解,而是自已想办法进行问题转化,用学过的知识去解决新问题,知道吗?这是一种很重要的思考方法,学习数学很需要这种知识迁移能力,希望在以后的学习中同学们继续发扬。
活动五:
布置作业:教科书五十页自主练习的第1题。
上一篇:生活中的负数教学设计精编5篇
下一篇:美术说课稿样例8分钟(优推5篇)