初中数学精编教学设计【精彩5篇】
【路引】由阿拉题库网美丽的网友为您整理分享的“初中数学精编教学设计【精彩5篇】”文档资料,以供您学习参考之用,希望这篇范文对您有所帮助,喜欢就复制下载支持吧!
初中数学教学设计【第一篇】
一、学情分析
八年级学生具有强烈的好胜心和求知欲,抽象思维趋于成熟,形象直观思维能力较强,具有一定的独立思考、实践操作、合作交流、归纳概括等能力,能进行简单的推理
二、教材分析
这节课是人教版八年级第十八章第一节的内容,教学内容是勾股定理公式的推导、证明及其简单的应用。本节课是在学生已经掌握了直角三角形有关性质的基础上进行学习的,勾股定理是几何中最重要的定理之一,它揭示的是直角三角形中三条边之间的数量关系,将数与形密切联系起来,为以后学习四边形、圆、解直角三角形等数学知识奠定了基础。它有着丰富的历史背景,在数学的发展中起着重要的作用,在现实生活中也有着广泛的应用。学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。
三、教学目标设计
知识与技能
探索勾股定理的内容并证明,能够运用勾股定理进行简单计算和运用
过程与方法
(1)通过观察分析,大胆猜想,探索勾股定理,培养学生动手操作、合作交流、逻辑推理的能力。
(2)在探索勾股定理的过程中,让学生经历“观察—猜想—归纳—验证”的数学过程,并体会数形结合和从特殊到一般的思想方法。
情感态度与价值
(1)在探索勾股定理的过程中,培养学生的合作交流意识和探索精神,增进数学学习的信心,感受数学之美,探究之趣。
(2)利用远程教育资源介绍中国古代勾股方面的成就,激发学生热爱祖国和热爱祖国悠久文化的思想感情,培养学生的民族自豪感和钻研精神。
四、教学重点难点
教学重点
探索和证明勾股定理 ·教学难点
用拼图的方法证明勾股定理
五、教学方法
(学法)“引导探索法”
(自主探究,合作学习,采用小组合作的方法。
六、教具准备
课件、三角板
七、教学过程设计
教学环节1
教学过程:创设情境探索新知 教师活动:出示第24届国际数学家大会的会徽的图案向学生提问
(1) 你见过这个图案吗?
(2) 你听说过“勾股定理”吗?
学生活动:学生思考回答
设计意图:目的在于从现实生活中提出“赵爽弦图”,进一步激发学生积极主动地投入到探索活动中,同时为探索勾股定理提供背景材料。
教学环节2 教学过程:实验操作获取新知归纳验证完善新知
教师活动:出示课件,引导学生探索
学生活动:猜想实验合作交流画图测量拼图验证
设计意图:渗透从特殊到一般的数学思想。为学生提供参与数学活动的时间和空间,发挥学生的主体作用;让学生自己动手拼出赵爽弦图,培养他们学习数学的成就感。通过拼图活动,使学生对定理的理解更加深刻,体会数学中的数形结合思想,调动学生思维的积极性,激发学生探求新知的欲望。给学生充分的时间与空间讨论、交流,鼓励学生敢于发表自己的见解,感受合作的重要性。
教学环节3 教学过程:解决问题应用新知
教师活动:出示例题和练习
学生活动:交流合作,解决问题
设计意图:通过运用勾股定理对实际问题的解释和应用,培养学生从身边的事物中抽象出几何模型的能力,使学生更加深刻地认识数学的本质:数学来源于生活,并能服务于生活,顺利解决如何将实际问题转化为求直角三角形边长的问题,培养学生的数学应用意识。
教学环节4 教学内容:课堂小结巩固新知布置作业
教师活动:引导学生小结
学生活动:讨论交流、自由发言
设计意图:既引导学生从面积的角度理解勾股定理,又从能力、情感、态度等方面关注学生对课堂整体感受,在轻松愉快的气氛中体会收获的喜悦。
通过布置课外作业,给学生留有继续学习的空间和兴趣,及时获知学生对本节课知识的掌握情况,适当的调整教学进度和教学方法,并对学习有困难的学生给与指导。
八、板书设计
勾股定理:如果直角三角形的两直角边分别为a和b,斜边为c,那么 a2+b2=c2。
九、习题拓展
如图,将长为10米的梯子AC斜靠在墙上,BC长为6米。
(1)求梯子上端A到墙的底端B的距离AB。
(2)若梯子下部C向后移动2米到C1点,那么梯子上部A向下移动了多少米?
十、作业设计
1。收集有关勾股定理的证明方法, 下节课展示、交流。
2。做一棵奇妙的勾股树(选做)
初中数学教案【第二篇】
今天小编为大家精心整理了1篇有关初中数学教案之公式的相关内容,以供大家阅读!
教学设计示例一——公式
教学目标
1.了解公式的意义,使学生能用公式解决简单的实际问题;
2.初步培养学生观察、分析及概括的能力;
3.通过本节课的教学,使学生初步了解公式来源于实践又反作用于实践。
教学建议
一、教学重点、难点
重点:通过具体例子了解公式、应用公式.
难点:从实际问题中发现数量之间的关系并抽象为具体的公式,要注意从中反应出来的归纳的思想方法。
二、重点、难点分析
人们从一些实际问题中抽象出许多常用的、基本的数量关系,往往写成公式,以便应用。如本课中梯形、圆的面积公式。应用这些公式时,首先要弄清楚公式中的字母所表示的意义,以及这些字母之间的数量关系,然后就可以利用公式由已知数求出所需的未知数。具体计算时,就是求代数式的值了。有的公式,可以借助运算推导出来;有的公式,则可以通过实验,从得到的反映数量关系的一些数据(如数据表)出发,用数学方法归纳出来。用这些抽象出的具有一般性的公式解决一些问题,会给我们认识和改造世界带来很多方便。
三、知识结构
本节一开始首先概述了一些常见的公式,接着三道例题循序渐进的讲解了公式的直接应用、公式的先推导后应用以及通过观察归纳推导公式解决一些实际问题。整节内容渗透了由一般到特殊、再由特殊到一般的辨证思想。
四、教法建议
1.对于给定的可以直接应用的公式,首先在给出具体例子的前提下,教师创设情境,引导学生清晰地认识公式中每一个字母、数字的意义,以及这些数量之间的对应关系,在具体例子的基础上,使学生参与挖倔其中蕴涵的思想,明确公式的应用具有普遍性,达到对公式的灵活应用。
2.在教学过程中,应使学生认识有时问题的解决并没有现成的公式可套,这就需要学生自己尝试探求数量之间的关系,在已有公式的基础上,通过分析和具体运算推导新公式。
3.在解决实际问题时,学生应观察哪些量是不变的,哪些量是变化的,明确数量之间的对应变化规律,依据规律列出公式,再根据公式进一步地解决问题。这种从特殊到一般、再从一般到特殊认识过程,有助于提高学生分析问题、解决问题的能力。
教学设计示例二——公式
一、教学目标
(一)知识教学点
1.使学生能利用公式解决简单的实际问题.
2.使学生理解公式与代数式的关系.
(二)能力训练点
1.利用数学公式解决实际问题的能力.
2.利用已知的公式推导新公式的能力.
(三)德育渗透点
数学来源于生产实践,又反过来服务于生产实践.
(四)美育渗透点
数学公式是用简洁的数学形式来阐明自然规定,解决实际问题,形成了色彩斑斓的多种数学方法,从而使学生感受到数学公式的简洁美.
二、学法引导
1.数学方法:引导发现法,以复习提问小学里学过的公式为基础、突破难点
2.学生学法:观察分析推导计算
三、重点、难点、疑点及解决办法
1.重点:利用旧公式推导出新的图形的计算公式.
2.难点:同重点.
3.疑点:把要求的图形如何分解成已经熟悉的图形的和或差.
四、课时安排
1课时
五、教具学具准备
投影仪,自制胶片。
六、师生互动活动设计
教者投影显示推导梯形面积计算公式的图形,学生思考,师生共同完成例1解答;教者启发学生求图形的面积,师生总结求图形面积的公式.
七、教学步骤
(一)创设情景,复习引入
师:同学们已经知道,代数的一个重要特点就是用字母表示数,用字母表示数有很多应用,公式就是其中之一,我们在小学里学过许多公式,请大家回忆一下,我们已经学过哪些公式,教法说明,让学生一开始就参与课堂教学,使学生在后面利用公式计算感到不生疏.
在学生说出几个公式后,师提出本节课我们应在小学学习的基础上,研究如何运用公式解决实际问题.
板书:公式
师:小学里学过哪些面积公式?
板书:S=ah
(出示投影1)。解释三角形,梯形面积公式
教法说明让学生感知用割补法求图形的面积。
(二)探索求知,讲授新课
师:下面利用面积公式进行有关计算
(出示投影2)
例1如图是一个梯形,下底(米),上底,高,利用梯形面积公式求这个梯形的面积S。
师生共同分析:1.根据梯形面积计算公式,要计算梯形面积,必须知道哪些量?这些现在知道吗?
2.题中“M”是什么意思?(师补充说明厘米可写作cm,千米写作km,平方厘米写作等)
学生口述解题过程,教师予以指正并指出,强调解题的规范性.
教法说明1.通过分析,引导学生在一个实际问题中,必须明确哪些量是已知的,哪些量是未知的,要解决这个问题,必须已知哪些量.2.用公式计算时,要先写出公式,然后代入计算,养成良好的解题习惯.
(出示投影3)
例2如图是一个环形,外圆半径,内圆半径求这个环形的面积
学生讨论:1.环形是怎样形成的.2.如何求环形的面积讨论后请学生板演,其他同学做在练习本上,教育巡回指导.
评讲时注意1.如果有学生作了简便计算,则给予表扬和鼓励:如果没有学生这样计算,则启发学生这样计算.
2.本题实际上是由圆的面积公式推导出环形面积公式.
3.进一步强调解题的规范性
教法说明,让学生做例题,学生能自己评判对与错,优与劣,是获取知识的一个很好的途径.
测试反馈,巩固练习
(出示投影4)
1.计算底,高的三角形面积
2.已知长方形的长是宽的1.6倍,如果用a表示宽,那么这个长方形的周长是多少?当时,求t
3.已知圆的半径,,求圆的周长C和面积S
4.从A地到B地有20千米上坡路和30千米下坡路,某车上坡时每小时走千米,下坡时每小时走千米。
(1)求A地到B地所用的时间公式。
(2)若千米/时,千米/时,求从A地到B地所用的时间。
学生活动:分两次完成,每次两题,两人板演,其他同学在练习本上完成,做好后同桌交换评判,第一次可请两位基础较差的同学板演,第二次请中等层次的学生板演.
教法说明面向全体,分层教学,能照顾两极,使所有的同学有所发展.
师:公式本身是用等号联接起来的代数式,许多公式在实际中都有重要的用处,可以用公式直接计算还可以利用公式推导出新的公式.
八、随堂练习
(一)填空
1.圆的半径为R,它的面积________,周长_____________
2.平行四边形的底边长是,高是,它的面积_____________;如果,,那么_________
3.圆锥的底面半径为,高是,那么它的体积__________如果,,那么_________
(二)一种塑料三角板形状,尺寸如图,它的厚度是,求它的体积V,如果,,,V是多少?
九、布置作业
(一)必做题课本第xx页x、x、x第xx页x组x
(二)选做题课本第xx页xx组x
初中数学教学教案【第三篇】
教学目标
知识技能
1.通过观察实验,使学生理解圆的对称性。
2.掌握垂径定理及其推论,理解其证明,并会用它解决有关的证明与计算问题。
过程方法1.利用操作几何的方法,理解圆是轴对称图形,过圆心的直线都是它的对称轴。
2.经历探索垂径定理及其推论的过程,进一步和理解研究几何图形的各种方法。
情感态度
激发学生观察、探究、发现数学问题的兴趣和欲望。
教学重点
垂径定理及其运用。
教学难点
发现并证明垂径定理
教学过程设计
教学程序及教学内容师生行为设计意图
一、导语:直径是圆中特殊的弦,研究直径是研究圆的重要突破口,这节课我们就从对直径的研究开始来研究圆的性质。
二、探究新知
(一)圆的对称性
沿着圆的任意一条直径所在直线对折,重复做几次,看看你能发现什么结论?
得到:把圆沿着它的任意一条直径所在直线对折,直径两旁的两个半圆就会重合在一起,因此,圆是轴对称图形,任何一条直径所在的直线都是圆的对称轴。
(二)垂径定理
完成课本思考
分析:1.如何说明图是轴对称图形?
2.你能用不同方法说明图中的线段相等,弧相等吗?
垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧。
即:直径CD垂直于弦AB则CD平分弦AB,并且平分弦AB所对的两条弧。
推理验证:可以连结OA、OB,证其与AE、BE构成的两个全等三角形,进一步得到不同的等量关系。
分析:垂径定理是由哪几个已知条件得到哪几条结论?
即一条直线若满足过圆心、垂直于弦、则可以推出平分弦、平分弦所对的优弧,平分弦所对的劣弧。
垂径定理推论
平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。
思考:1.这条推论是由哪几个已知条件得到哪几条结论?
2.为什么要求“弦不是直径”?否则会出现什么情况?
垂径定理的进一步推广
思考:类似推论的结论还有吗?若有,有几个?分别用语言叙述出来。
归纳:只要已知一条直线满足“垂直于弦、过圆心、平分弦、平分弦所对的优弧,平分弦所对的劣弧。”中的两个条件,就可以得到另外三个结论。
(三)、垂径定理、推论的应用
完成课本赵州桥问题
分析:1.根据桥的实物图画出的几何图形应是怎样的?
2.结合所画图形思考:圆的半径r、弦心距d、弦长a,弓形高h有怎样的数量关系?
3.在圆中解决有关弦的问题时,常常需要作垂直于弦的直径,作为辅助线,这样就可以把垂径定理和勾股定理结合起来,得到圆的半径r、弦心距d、弦长a的一半之间的关系式:
三、课堂训练
完成课本88页练习
补充:
1.如图,一条公路的转弯处是一段圆弧,点O是圆心,其中CD=600m,E为圆O上一点,OE⊥CD,垂足为F,EF=90m,求这段弯路的半径。
2.有一石拱桥的桥拱是圆弧形,如图所示,正常水位下水面宽AB=60m,水面到拱顶距离CD=18m,当洪水泛滥时,水面宽MN=32m时是否需要采取紧急措施?请说明理由。(当水面距拱顶3米以内时需要采取紧急措施)
四、小结归纳
1. 垂径定理和推论及它们的应用
2. 垂径定理和勾股定理相结合,将圆的问题转化为直角三角形问题。
3.圆中常作辅助线:半径、过圆心的弦的垂线段
五、作业设计
作业:课本94页 1,95页 9,12
补充:已知:在半径为5?的⊙O中,两条平行弦AB,CD分别长8?,6?.求两条平行弦间的距离。教师从直径引出课题,引起学生思考
学生用纸剪一个圆,按教师要求操作,观察,思考,交流,尝试发现结论。
学生观察图形,结合圆的对称性和相关知识进行思考,尝试得出垂径定理,并从不同角度加以解释。再进行严格的几何证明。
师生分析,进一步理解定理,析出定理的题设和结论。
教师引导学生类比定理独立用类似的方法进行探究,得到推论
学生根据问题进行思考,更好的理解定理和推论,并弄明白它们的区别与联系
学生审题,尝试自己画图,理清题中的数量关系,并思考解决方法,由本节课知识想到作辅助线办法,
教师组织学生进行练习,教师巡回检查,集体交流评价,教师指导学生写出解答过程,方法,规律。
引导学生分析:要求当洪水到来时,水面宽MN=32m是否需要采取紧急措施,只要求出DE的长,因此只要求半径R,然后运用几何代数解求R.
让学生尝试归纳,,发言,体会,反思,教师点评汇总
通过学生亲自动手操作发现圆的对称性,为后续探究打下基础
通过该问题引起学生思考,进行探究,发现垂径定理,初步感知培养学生的分析能力,解题能力。
为继续探究其推论奠定基础
培养学生解决问题的意识和能力
全面的理解和掌握垂径定理和它的推论,并进行推广,得到其他几个定理,完整的把握所学知识。
体会转化思想,化未知为已知,从而解决本题,同时把握一类题型的解题方法,作辅助线方法。
运用所学知识进行应用,巩固知识,形成做题技巧
让学生通过练习进一步理解,培养学生的应用意识和能力
归纳提升,加强学习反思,帮助学生养成系统整理知识的习惯
巩固深化提高
板 书 设 计
课题
垂径定理垂径定理的进一步推广
赵州桥问题归纳
数学初中教学设计【第四篇】
教学目标
1、经历不同的拼图方法验证公式的过程,在此过程中加深对因式分解、整式运算、面积等的认识。
2、通过验证过程中数与形的结合,体会数形结合的思想以及数学知识之间内在联系,每一部分知识并不是孤立的。
3、通过丰富有趣的拼图活动,经历观察、比较、拼图、计算、推理交流等过程,发展空间观念和有条理地思考和表达的能力,获得一些研究问题与合作交流方法与经验。
4、通过获得成功的体验和克服困难的经历,增进数学学习的信心。通过丰富有趣拼的图活动增强对数学学习的兴趣。
重点
1、通过综合运用已有知识解决问题的过程,加深对因式分解、整式运算、面积等的认识。
2、通过拼图验证公式的过程,使学习获得一些研究问题与合作交流的方法与经验。
难点:利用数形结合的方法验证公式
教学方法:动手操作,合作探究课型新授课教具投影仪
情景设置:
你已知道的关于验证公式的拼图方法有哪些?(教师在此给予学生独立思考和讨论的时间,让学生回想前面拼图。)
新课讲解:
把几个图形拼成一个新的图形,再通过图形面积的计算,常常可以得到一些有用的式子。美国第二十任总统伽菲尔德就由这个图(由两个边长分别为a、b、c的直角三角形和一个两条直角边都是c的直角三角形拼成一个新的图形)得出:c2=a2+b2他的证法在数学史上被传为佳话。他是这样分析的,如图所示:
教师接着在介绍教材第94页例题的拼法及相关公式
提问:还能通过怎样拼图来解决以下问题
(1)任意选取若干块这样的硬纸片,尝试拼成一个长方形,计算它的面积,并写出相应的等式;
(2)任意写出一个关于a、b的二次三项式,如a2+4ab+3b2
试用拼一个长方形的方法,把这个二次三项式因式分解。
这个问题要给予学生充足的时间和空间进行讨论和拼图,教师在这要引导适度,不要限制学生思维,同时鼓励学生在拼图过程中进行交流合作
了解学生拼图的情况及利用自己的拼图验证的情况。教师在巡视过程中,及时指导,并让学生展示自己的拼图及让学生讲解验证公式的方法,并根据不同学生的不同状况给予适当的引导,引导学生整理结论。
小结:
从这节课中你有哪些收获?
(教师应给予学生充分的时间鼓励学生畅所欲言,只要是学生的感受和想法,教师要多鼓励、多肯定。最后,教师要对学生所说的进行全面的总结。)
学生回答
a(b+c+d)=ab+ac+ad
(a+b)(c+d)=ac+ad+bc+bd
(a+b)2=a2+2ab+b2
学生拿出准备好的硬纸板制作
给学生充分的时间进行拼图、思考、交流经验,对于有困难的学生教师要给予适当引导。
数学初中教学设计【第五篇】
教学设计示例一——公式
教学目标
1、了解公式的意义,使学生能用公式解决简单的实际问题;
2、初步培养学生观察、分析及概括的能力;
3、通过本节课的教学,使学生初步了解公式来源于实践又反作用于实践。
教学建议
一、教学重点、难点
重点:通过具体例子了解公式、应用公式、
难点:从实际问题中发现数量之间的关系并抽象为具体的公式,要注意从中反应出来的归纳的思想方法。
二、重点、难点分析
人们从一些实际问题中抽象出许多常用的、基本的数量关系,往往写成公式,以便应用。如本课中梯形、圆的面积公式。应用这些公式时,首先要弄清楚公式中的字母所表示的意义,以及这些字母之间的数量关系,然后就可以利用公式由已知数求出所需的未知数。具体计算时,就是求代数式的值了。有的公式,可以借助运算推导出来;有的公式,则可以通过实验,从得到的反映数量关系的一些数据(如数据表)出发,用数学方法归纳出来。用这些抽象出的具有一般性的公式解决一些问题,会给我们认识和改造世界带来很多方便。
三、知识结构
本节一开始首先概述了一些常见的公式,接着三道例题循序渐进的讲解了公式的直接应用、公式的先推导后应用以及通过观察归纳推导公式解决一些实际问题。整节内容渗透了由一般到特殊、再由特殊到一般的辨证思想。
四、教法建议
1、对于给定的可以直接应用的公式,首先在给出具体例子的前提下,教师创设情境,引导学生清晰地认识公式中每一个字母、数字的意义,以及这些数量之间的对应关系,在具体例子的基础上,使学生参与挖倔其中蕴涵的思想,明确公式的应用具有普遍性,达到对公式的灵活应用。
2、在教学过程中,应使学生认识有时问题的解决并没有现成的公式可套,这就需要学生自己尝试探求数量之间的关系,在已有公式的基础上,通过分析和具体运算推导新公式。
3、在解决实际问题时,学生应观察哪些量是不变的,哪些量是变化的,明确数量之间的对应变化规律,依据规律列出公式,再根据公式进一步地解决问题。这种从特殊到一般、再从一般到特殊认识过程,有助于提高学生分析问题、解决问题的能力。
教学设计示例二——公式
一、教学目标
(一)知识教学点
1、使学生能利用公式解决简单的实际问题、
2、使学生理解公式与代数式的关系、
(二)能力训练点
1、利用数学公式解决实际问题的能力、
2、利用已知的公式推导新公式的能力、
(三)德育渗透点
数学来源于生产实践,又反过来服务于生产实践、
(四)美育渗透点
数学公式是用简洁的数学形式来阐明自然规定,解决实际问题,形成了色彩斑斓的多种数学方法,从而使学生感受到数学公式的简洁美、
二、学法引导
1、数学方法:引导发现法,以复习提问小学里学过的公式为基础、突破难点
2、学生学法:观察分析推导计算
三、重点、难点、疑点及解决办法
1、重点:利用旧公式推导出新的图形的计算公式、
2、难点:同重点、
3、疑点:把要求的图形如何分解成已经熟悉的图形的和或差、
四、课时安排
1课时
五、教具学具准备
投影仪,自制胶片。
六、师生互动活动设计
教者投影显示推导梯形面积计算公式的图形,学生思考,师生共同完成例1解答;教者启发学生求图形的面积,师生总结求图形面积的公式、
七、教学步骤
(一)创设情景,复习引入
师:同学们已经知道,代数的一个重要特点就是用字母表示数,用字母表示数有很多应用,公式就是其中之一,我们在小学里学过许多公式,请大家回忆一下,我们已经学过哪些公式,教法说明,让学生一开始就参与课堂教学,使学生在后面利用公式计算感到不生疏、在学生说出几个公式后,师提出本节课我们应在小学学习的基础上,研究如何运用公式解决实际问题、
板书:公式
师:小学里学过哪些面积公式?
板书:S=ah
(出示投影1)。解释三角形,梯形面积公式
教法说明让学生感知用割补法求图形的面积。
(二)探索求知,讲授新课
师:下面利用面积公式进行有关计算
(出示投影2)
例1如图是一个梯形,下底(米),上底,高,利用梯形面积公式求这个梯形的面积S。
师生共同分析:
1、根据梯形面积计算公式,要计算梯形面积,必须知道哪些量?这些现在知道吗?
2、题中“M”是什么意思?(师补充说明厘米可写作cm,千米写作km,平方厘米写作等)
学生口述解题过程,教师予以指正并指出,强调解题的规范性。
教法说明
1、通过分析,引导学生在一个实际问题中,必须明确哪些量是已知的,哪些量是未知的,要解决这个问题,必须已知哪些量。
2、用公式计算时,要先写出公式,然后代入计算,养成良好的解题习惯。
(出示投影3)
例2如图是一个环形,外圆半径,内圆半径求这个环形的面积
学生讨论:
1、环形是怎样形成的、
2、如何求环形的面积讨论后请学生板演,其他同学做在练习本上,教育巡回指导。
评讲时注意:
1、如果有学生作了简便计算,则给予表扬和鼓励:如果没有学生这样计算,则启发学生这样计算。
2、本题实际上是由圆的面积公式推导出环形面积公式。
3、进一步强调解题的规范性
教法说明,让学生做例题,学生能自己评判对与错,优与劣,是获取知识的一个很好的途径。
测试反馈,巩固练习
(出示投影4)
1、计算底,高的三角形面积
2、已知长方形的长是宽的1。6倍,如果用a表示宽,那么这个长方形的周长是多少?当时,求t
3、已知圆的半径,,求圆的周长C和面积S
4、从A地到B地有20千米上坡路和30千米下坡路,某车上坡时每小时走千米,下坡时每小时走千米。
(1)求A地到B地所用的时间公式。
(2)若千米/时,千米/时,求从A地到B地所用的时间。
学生活动:分两次完成,每次两题,两人板演,其他同学在练习本上完成,做好后同桌交换评判,第一次可请两位基础较差的同学板演,第二次请中等层次的学生板演、
教法说明面向全体,分层教学,能照顾两极,使所有的同学有所发展、
师:公式本身是用等号联接起来的代数式,许多公式在实际中都有重要的用处,可以用公式直接计算还可以利用公式推导出新的公式、
八、随堂练习
(一)填空
1、圆的半径为R,它的面积________,周长_____________
2、平行四边形的底边长是,高是,它的面积_____________;如果,,那么_________
3、圆锥的底面半径为,高是,那么它的体积__________如果,,那么_________
(二)一种塑料三角板形状,尺寸如图,它的厚度是,求它的体积V,如果,V是多少?
九、布置作业
(一)必做题课本第___页x、x、x第___页x组x
(二)选做题课本第___页___组x
上一篇:钓鱼的启示教学设计【精彩4篇】