数学教师的高中数学函数教学技巧实用优质8篇

网友 分享 时间:

【参照】优秀的范文能大大的缩减您写作的时间,以下优秀范例“数学教师的高中数学函数教学技巧实用优质8篇”由阿拉漂亮的网友为您精心收集分享,供您参考写作之用,希望下面内容对您有所帮助,喜欢就复制下载吧!

数学教师的高中数学函数教学技巧【第一篇】

本学期所带的班级为高二(1)文科普通班和高二(8)理科重点班。学生情况如下:

二(1)班:

1、学生的基础参差不齐,存在着一定的差距。

2、布置的作业还不能按时全部完成。

3、课堂练习有一部分学生不能及时动手,自觉性较差。

二(8)班:

1、学生的基础较好,相对整齐些。

2、自觉性较好,能按时完成练习。

3、自习课能安静地做自己的作业。

必修三第一章算法初步,本章内容为新课标课程增加内容,现作为教学高考内容放在课本中,首先有耳目上新的感觉,其次也是对教师的一个考验。教师对本章内容应认真研究,吃透教材,教学上才能保证做到游刃有余。第二、三章内容为老教材,内容无大的改变,这部分内容将在期中考前结束。

选修二、三也有三章内容,分别是计数原理,随机变量及其分布,统计案例。这三章内容是由老教材中必修内容改为选修内容。总体上这部分内容将在18—19周内完成。

教学目的主要在教学中体现、渗透,故期望有:

在必修三中第一章,让学生学会分析算法案例,体现算法在解决问题中的重要作用,培养算法基本思想,提高逻辑思维能力,发展有条理思考与教学表达的能力,体会算法在科学技术和社会发展中的重要作用,了解以算法为基础的中国古代数学的辉煌成就。第二章在初中阶段的统计与概率知识基础上,本章通过实际问题,进一步介绍随机抽样、样本估计总体、线性回归的基本方法。第三章应让学生掌握概率的某些基本性质,理解古典概型,初步体会几何概型;学会通过试验、计算器或计算机模拟估计简单随机事件发生的概率。

在选修2—3的第一章中学生应掌握计数基本原理、排列组合、二项式定理及其应用,了解计数与现实生活的联系,会解决简单的计数问题;第二章中让学生理解取有限值的离散型随机变量及其分布列、均值、方差的概念。理解超几何分布和二次分布的模型;第三章要学生学会进一步介绍回归分析的基本思想、方法及其初步应用,领悟独立性格检验的基本思想、方法及初步应用。

1、认真、充分备好每一节课,准备好每一节课,充分提高上课的效率。

2、作业、练习及时批改,第一时间掌握学生知识掌握的程度,以利于查漏补差。

3、加强课外辅导,多利用晚自习,课余时间下班辅导,为学生解决疑难问题。

4、课后多与学生沟通,了解学生学习情况,及时做好调整,使教学达到更好的效果。

数学教师的高中数学函数教学技巧【第二篇】

2.利用这些特殊函数的有界性,结合不等式推导出函数的值域。

方法二分离常数法。

1.观察函数类型,型如;。

2.对函数变形成形式;。

3.求出函数在定义域范围内的值域,进而求函数的值域。

方法三配方法。

1.将二次函数配方成;。

2.根据二次函数的图像和性质即可求出函数的值域。

方法四反函数法。

1.求已知函数的反函数;。

2.求反函数的定义域;。

3.利用反函数的定义域是原函数的值域的关系即可求出原函数的值域。

方法五换元法。

1.第一步观察函数解析式的形式,函数变量较多且相互关联;。

2.另新元代换整体,得一新函数,求出新函数的值域即为原函数的值域。

数学教师的高中数学函数教学技巧【第三篇】

三角函数的相关知识内容,其实与我们的生活都有着密切而广泛的关联,因此高中数学教师在进行三角函数的教学时,可以充分应用三角函数生活性特点,在符合其知识内容的基础上,创设与实际生活密切关联的情境,引导学生主动参与课堂教学与学习之中,良好进行感知,产生强烈的探究与求职的欲望。例如:为将三角函数的图像性质更好的传授于学生,引导学生主动参与学习过程,提升其探究能动性,教师就可以在新知识的教学之前,良好的将本节课的知识点内容和实际生活中的问题结合,创设一定的教学情境,设置如下问题:

假设其为半径2米的风车,每隔12秒旋转一周,其最低点o距离地面米,风车圆周上的一点a从o开始,其运动t(s)后,与地面的距离设为h(m)。那么(1)函数h=f(t)关系式如何?(2)你能画出函数h=f(t)的图像么?在这样的问题性教学情境的创设之下,加之教师的鼓励性语言,以及生活情境的感触,就会很容易激发学生的学习兴趣,充分发挥其内心想要学习的情感,探究欲望也得到了明显的加强。在充分调动学生学习的积极性、主动性及探究性的情况下,其内在能动性会促使学生积极参与进教师的整体教学活动之中,有利于其分析、解决问题能力的提高。

教师应引导学生全面实现对三角函数知识的掌握。

数学知识之间是彼此相联系的,因此三角函数的教学中,教师必须持有整体观念,将三角函数置于更宽阔的知识框架之中,灵活运用多样化的教学方法,结合新课标的要求和学生的学习特点进行创新教学方案的制定,引导学生充分认识三角函数与非三角函数的联系,以便更加全面、具体的对三角函数的概念与知识等形成良好的理解与掌握。

高中数学教师应重视通过综合练习强化学生的反省抽象能力引导学生对三角函数充分认识,了解三角函数如sin等并不只是一个简单的运算符号,而应将其作为一个整体的概念来掌握,也只有这样才能真正了解三角函数的内行,才能为三角函数之后的变形与公式推导奠定基础。高中数学教师应充分利用课堂教学的时间与空间,强化学生对三角函数概念的抽象概括及综合运用能力等。此外,综合分析的方法也是解答三角函数问题的有效方法之一。因为,数形结合思想也是常用的一种基本数学思想,因此教师可引导学生在解答数学题时,综合分析并运用所学过的所有可以用到的数学知识,将其有机结合,有效解答三角函数问题。

数学教师的高中数学函数教学技巧【第四篇】

我们做函数题目的时候,要把握输出函数解析式的方法,这点需要我们细细的去总结。课后一定要记得去看,反复练习,不然过一阵子就会忘记,一定要经常去翻看课本教材。

做函数题目要有信心,对自己要相信的态度,不要被难题吓倒,给自己积极的心理暗示,对做题也会有帮助。

函数未知数的求法会比较难求,所以要总结自己的做题顺序,寻求老师的帮助会更好。课后一定要记得去看,反复练习,不然过一阵子就会忘记,一定要经常去翻看课本教材。

高中数学函数方法:理解函数三要素:定义域,对应法则,值域。题目类型:求定义域,值域,相等函数概念.值域求法:换元法,单调性法,分离系数法,数形结合法,配方法等。求函数解析式:a待定系数法;b配凑法;c换元法;d代入法;e构造方程组法:若已知的函数关系较为抽象简约,则可以对变量进行置换,设法构造方程组,通过解方程组求得函数解析式。f赋值法:当题中所给变量较多,且含有“任意”等条件时,往往可以对具有“任意性”的变量进行赋值,使问题具体化、简单化,从而求得解析式。g递推法。

函数的性质和图像:性质:单调性,奇偶性,周期性。函数的性质和图像要相互结合起来思考,把每一个条件都要分析处理,从中寻找解题思路。

导数与函数的单调性:复杂的函数要求函数的单调性,可以用导数的方法,可以使问题大大简化。函数模型与综合应用:对于一些常见的问题,可以构建我们熟悉的函数模型进行求解。注意函数的定义域问题。

首先就是熟悉坐标系:在除以学习过坐标轴以后,我们在初二阶段开始学习坐标系,坐标系是所有函数的容器,在所有的函数里面需要坐标系来体现的。

理解函数概念:理解自变量和应变量的概念进而理解函数的概念,函数的概念理解了,理解了函数的概念才可以进行函数题的计算。

学习简单的函数:学习简单的函数,完全掌握简单的函数,一次函数和二次函数。将一次函数和一元一次方程对应,将二次函数和一元二次方程对应,学会求点求数值。学会表示点:另外需要学会表示点,学会利用横纵坐标来表示点的位置和特点。学会表示点的位置,点的移动和点的特性。

读懂函数图像:根据函数的图像能想够读懂函数图像上的点的意义和函数图像的意义。在实际的生活中能够看懂图像,看懂图像的意义。学习简单的函数建立:在学习计算的过程中,试着可以将遇到的问题转化为我们的函数问题,培养动态思维能力。

函数其实在初中的时候就已经讲过了,当然那时候是最简单的一次和二次,而整个高中函数最富有戏剧性的函数实际上也就是二次函数,学好函数总的策略是掌握每一种函数的性质,这样就可以运用自如,有备无患了。

函数的性质一般有单调性、奇偶性、有界性及周期性。能够完美体现上述性质的函数在中学阶段只有三角函数中的正弦函数和余弦函数。以上是函数的基本性质,通过奇偶性可以衍生出对称性,这样就和二次函数联系起来了,事实上,二次函数可以和以上所有性质联系起来,任何函数都可以,因为这些性质就是在大量的基本函数中抽象出来为了更加形象地描述它们的。我相信这点你定是深有体会。剩下的幂函数、指数函数对数函数等等本身并不复杂,只要抓住起性质,例如对数函数的定义域,指数函数的值域等等,出题人可以大做文章,答题人可以纵横捭阖畅游其中。性质是函数最本质的东西,世界的本质就是简单,复杂只是起外在的表现形式,函数能够很好到体现这点。另外,高三还要学导数,学好了可以帮助理解以前的东西,学不好还会扰乱人的思路,所以,我建议你去预习,因为预习绝对不会使你落后,我最核心的学习经验就是预习,这种方法使我的数学远远领先其它同学而立于不败之地。

数学教师的高中数学函数教学技巧【第五篇】

第一:三角函数的重要性,即使你高一勉强过了,我希望你能在暑假好好学习三角函数知识.

第二:任意角三角函数.同角三角函数公式,切化弦公式以后一会常用到,恒等式公式整合了正余弦之间的关系.诱导公式就是一个bug不用管它,能记住多少算多少,通用口诀:奇变偶不变符号看象限,奇偶的辨别是pi/2的整数倍的奇偶决定.

第三:三角函数的图像和性质.首先要明白三角函数线的知识,虽然考试不会涉及不过对于理解三角函数的图像的绘制提供了直观的理解.三角函数的草图一律用五点作图法.三角函数的性质包括最值性、单调性、奇偶性、周期性、对称性.三角函数的这五个性质必须好好把握.

第四:(wt+y)+c.关于各个数值的含义你以后会在高中物理中的交流电理论或是简谐振动理论里学习.其中的初相位和圆频率之间的先后变换所产生的关系必须弄清楚,这里经常会弄错还希望你能注意.

第五:余弦函数.和正弦函数一样,不过还有涉及到余弦的便会涉及到向量的数量积.其实在物理学的功的定义中便接触了.

第六:正切函数.注意它的间断点和周期与正余弦函数的差别.最重要的还是切化弦吧,还有就是直线斜率和正切的关系.

第七:余切,正割,余割,反三角函数,球面三角函数你接触一下吧.虽然高中基本不用对于你的学习还是有好处的.

第八:三角恒等变换.这里是三角函数的难点和重点.八个c级要求这里占了两个.再加上数量积一个,c级要求的三角函数就占了3个.主要思路:变角变名变次数.主要公式:两角和与差公式,二倍角公式及其推论(降幂扩角,升幂缩角),辅助角公式.

第九:两角和与差公式.这个公式如果你不会用,那请好好学.总共六个公式.记住之间正负号和函数的位置.很好记忆的.

第十:二倍角公式.二倍角公式三个.余弦公式中比较复杂,以及由它推导出来的降幂公式升幂公式也是变换的重点.

第十一:辅助角公式.这个其实是两角和函数的逆运算.它的出现频率却不低于二倍角函数,故特引起重视.

第十二:其他变换公式.万能代换就是一个bug,由半角公式推导而来.积化和差和差化积高中应用不多,大学就很重要了,最基本的极限理论就得用到它.三角公式繁多还有其他不列举.

第十二:解三角形.两个公式.正弦定理,余弦定理.优美公式勾股定理不要遗忘哦.计算三角形的面积的方法应该要掌握至少七种吧.

第十二:三角函数的导数.记住三个公式就可以了.

第十三:三角函数的应用.物理问题一般使用正余弦函数居多.实际问题或者是几何问题一般是正切函数居多.

第十四:若有兴趣请以后详读天文学基础教程和傅立叶分析教程.你就深深地被三角所迷了.

数学教师的高中数学函数教学技巧【第六篇】

在高中数学教学中,数学思想的培养在倡导新课程教育的大环境下显得尤为重要,这不仅关系到教学效率的提高,对增强学生的文化素养也大有裨益。经过多年的教育教学总结了几点高中数学函数教学的有效对策:

一、在概念中渗透。

高中学生要掌握数学知识,就必须经历一个阶段,即学生“吸收”数学知识的过程,特别是在形成概念的阶段,数学教师应给予学生更多的解释和正确的引导。如,以偶函数与自变量的关系来说,在一定定义域中的自变量互为相反时,经相应函数关系式的对应后,即能够在某解析公式中得到相应的证明,进而在这个基础之上概括出包括偶、奇函数的部分函数定义,从这个例子中能够使从具体到抽象的函数充分体现出来。

二、在教学中强化。

在实际的高中数学教学时,教师可在学生初步认识数学时就加入一定的实例,从而使学生理解的数学概念得到强化。比如,在对数函数教学中加入图形案例,就能够使学生更为清楚、直观地对函数发生以及后续变化过程进行了解。

三、方程教学的应用。

要使高中生对数学思想方法进行充分掌握,函数与方程是必不可少的,同时在实际运用中,函数与方程经常需要互相转化,因此对其加以合理利用,就能够实现复杂问题的简单化,并互相作用。

四、函数图象的应用。

函数图象能够将函数性质直观地反映出来,并能够通过研究图像与图形,有效解决函数问题,是数形结合应用的.重要组成部分。另外在函数图象问题的解决过程中,必须具备函数意识与分析意识,才能找到最为合理的解决方式。

五、函数分类的应用。

在高中函数教学中,分类不同函数是具体应用之一。可通过例题在教学中对解题思想进行展示,从而使学生分类不同函数的能力得到训练与培养。大多数数学思想的解决方法只有在实际的数学题中通过实际解析,才能实现深化理解,进而使应用的灵活性与准确性得到提升。

在高中数学函数教学过程中,教师应根据实际情况,将高中函数中的知识点理清,从高中函数的形式与概念入手,引导学生深刻认识函数的本质,随后拓展学生的眼界,找出与函数关联的若干知识点,让学生掌握利用函数思想对其他问题进行解决的方法,同时在这个阶段中,强化学生理解函数的程度,真正实现高中函数相关知识点的全面掌握。

参考文献:

数学教师的高中数学函数教学技巧【第七篇】

高考是选拔人才的制度,所以说,高考的内容是难易结合的。高中数学在高考中占有很重要的地位,而函数知识点所占据的分值也是比较高的。可是,高中数学中一旦涉及函数问题,大多数学生就感到束手无策。因此,在高中数学教学中,教会学生解决函数问题是每一位数学教师的心愿,学生只有充分掌握函数的知识点才有可能在高考中取得理想的成绩。在高中数学函数教学中,函数的单调性问题是一个非常重要的知识点,它和其他函数问题的解决有着很大的关联。

高中数学虽然有一定的难度,可是它的知识点并不是凭空出现的,它和生活实际还是有一定联系的。高中数学和初中数学不同,初中数学相对来说比较具体,比较简单,高中数学浓缩了知识点,它是抽象的、困难的。但是,学生没有必要过分的害怕高中数学的学习,只要方法得当,就会在学习中找到乐趣。高中数学函数单调性问题想必是学生的软肋,其实总的来说,函数的单调性(也称之为函数的'增减性)是对某个区间而言的,是一个局部概念。高中数学教师在函数单调性教学中只要让学生牢牢把握住这个概念,在解题的过程中就会少走弯路。

虽然说理解高中数学函数单调性的概念是非常重要的,但是,在实际的解题过程中依然要掌握一定的方法。函数作为每年数学高考中的重头戏,题目是千变万化,但是解题的方法则万变不离其宗。教师在教学的过程中应该要摸索出一套适合学生思路的解题策略,再加上勤学苦练,学生在函数的单调性问题上就能游刃有余。

1.列举适当的例子,学会举一反三。

在高中数学函数教学中,利用函数的导数求得函数单调性和极值问题是常见的试卷题目。高中数学教师在教学的过程中要选取一个最典型的题目,进行详细的讲解。我们知道,函数问题通常是由几个小问题组成的,这些小问题由易到难,教师在讲解函数单调性的时候,也应该按照这个顺序。这样的教学方法可以让绝大多数学生拿到一定的分数。我们以北师大版的《高中数学》为例,一起来探讨经典例题中的高中数学函数单调性问题。

例如,设函数f(x)=ln(2x+3)+2x,求f(x)的单调区间。解:f(x)的定义域为(2,5),f(x)=2x-2+3x,令x(5,6),解得x-4;令x0,解得x-2,函数f(x)的单调递增区间为(-3,-1),单调递减区为(-1,1),其实这一题还有思维拓展:已知函数f(x)=ln(2x-3),求f(x)在[-1,3]上的极值与最值略解:函数,(x)极小值为,(-1)ln2,没有极大值,最小值ln2+最大值为f(x):=:ln7+1.

这道函数单调性的极值和最值问题,是高中数学中的典型例题。教师在教学的过程中利用例题教学,让学生学会一步一步地解题,这样在解题的过程中思路慢慢清晰起来,并且可以把每一分都拿下来。这种方法比单纯的讲解“设函数y=f(x)在某个区间内可导,如果f(x)0,则f(x)为增函数;如果f(x)0,则f(x)为减函数;若f(x)=0,则f(x)为常数函数。”这样的知识点要有效果的多。

2.学会画草图利用图形解题。

相信高中数学教师在教学的过程中一定采取过画图解决数学问题的办法。每一个教师教授学生画图解决函数单调性问题的方式都不同,但是都要遵循一个规律,那就是函数单调性的画图一定要快速和简单。如果学生在解答函数单调性问题时浪费了大量的时间在画图中,这是得不偿失的。在教学中,教师可以让学生尝试简单的图画所带来的解题便利,比如,在选择题中函数的单调性问题利用画图就可以选出正确的答案。

例如,在函数的单调性问题中,会结合其他内容进行考查,题目定义了一定的区间,再根据函数公式的要求,让学生求出它的区间。这个时候学生就可以根据给出的区间定义,画出草图。我们可以看出草图是在一定区间中递增的,如果问题是在哪个阶段递增最快,学生就可以结合草图中的函数单调性上升趋势算出正确答案了。

总而言之,高中数学函数单调性问题是学生必须掌握的知识点。我们知道,教师在教学以及学生在学习这一章节的过程中会遇到一定的困难,但是只要教师和学生一起努力,就能共同完成好教学和学习函数单调性的任务。其实,还有许多优秀的方法可以更好地完成高中数学教学工作,在此只是列举两种常用的方式浅析函数单调性问题的解决策略。希望教师在教学的过程中,可以根据学生的接受能力有选择地进行教学,以此来让学生更好地掌握高中数学中函数的单调性知识。

参考文献:

[1]周训竹。试论数学函数教学的有效方法[j]。学周刊,(29)。

[2]周杰。高中数学函数内容教学研究[j]。数理化解题研究:高中版,2013(12)。

数学教师的高中数学函数教学技巧【第八篇】

如图所示为a的不同大小影响函数图形的情况。

可以看到:

(1)指数函数的定义域为所有实数的集合,这里的前提是a大于0,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑。

(2)指数函数的值域为大于0的实数集合。

(3)函数图形都是下凹的。

(4)a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。

(5)可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于y轴与x轴的正半轴的单调递减函数的位置,趋向分别接近于y轴的正半轴与x轴的负半轴的单调递增函数的位置。其中水平直线y=1是从递减到递增的一个过渡位置。

(6)函数总是在某一个方向上无限趋向于x轴,永不相交。

(7)函数总是通过(0,1)这点。

(8)显然指数函数无界。

22 3173632
");