二次函数的教学设计【4篇】
【导言】此例“二次函数的教学设计【4篇】”的教学资料由阿拉题库网友为您分享整理,以供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载支持吧!
《二次函数》教案【第一篇】
二次函数的教学设计
教学内容:人教版九年义务教育初中第三册第108页
教学目标:
1。 1。 理解二次函数的意义;会用描点法画出函数y=ax2的图象,知道抛物线的有关概念;
2。 2。 通过变式教学,培养学生思维的敏捷性、广阔性、深刻性;
3。 3。 通过二次函数的教学让学生进一步体会研究函数的一般方法;加深对于数形结合思想认识。
教学重点:二次函数的意义;会画二次函数图象。
教学难点:描点法画二次函数y=ax2的图象,数与形相互联系。
教学过程设计:
一 创设情景、建模引入
我们已学习了正比例函数及一次函数,现在来看看下面几个例子:
1。写出圆的半径是R(CM),它的面积S(CM2)与R的关系式
答:S=πR2。 ①
2。写出用总长为60M的篱笆围成矩形场地,矩形面积S(M2)与矩形一边长L(M)之间的关系
答:S=L(30-L)=30L-L2 ②
分析:①②两个关系式中S与R、L之间是否存在函数关系?
S是否是R、L的一次函数?
由于①②两个关系式中S不是R、L的一次函数,那么S是R、L的什么函数呢?这样的函数大家能不能猜想一下它叫什么函数呢?
答:二次函数。
这一节课我们将研究二次函数的有关知识。(板书课题)
二 归纳抽象、形成概念
一般地,如果y=ax2+bx+c(a,b,c是常数,a≠0) ,
那么,y叫做x的二次函数。
注意:(1)必须a≠0,否则就不是二次函数了。而b,c两数可以是零。(2) 由于二次函数的解析式是整式的形式,所以x的取值范围是任意实数。
练习:1。举例子:请同学举一些二次函数的例子,全班同学判断是否正确。
2。出难题:请同学给大家出示一个函数,请同学判断是否是二次函数。
(若学生考虑不全,教师给予补充。如:;;; 的形式。)
(通过学生观察、归纳定义加深对概念的理解,既培养了学生的实践能力,有培养了学生的探究精神。并通过开放性的练习培养学生思维的发散性、开放性。题目用了一些人性化的词语,也增添了课堂的趣味性。)
由前面一次函数的学习,我们已经知道研究函数一般应按照定义、图象、性质、求解析式几个方面进行研究。二次函数我们也会按照定义、图象、性质、求解析式几个方面进行研究。
(在这里指出学习函数的一般方法,旨在及时进行学法指导;并将此方法形成技能,以指导今后的学习;进一步培养终身学习的能力。)
三 尝试模仿、巩固提高
让我们先从最简单的二次函数y=ax2入手展开研究
1。 1。 尝试:大家知道一次函数的图象是一条直线,那么二次函数的图象是什么呢?
请同学们画出函数y=x2的图象。
(学生分别画图,教师巡视了解情况。)
2。 2。 模仿巩固:教师将了解到的各种不同图象用实物投影向大家展示,到底哪一个对呢?下面师生共同画出函数y=x2的图象。
解:一、列表:
x
九年级数学上册二次函数教案2021模板【第二篇】
一、素质教育目标
(一)知识教学点
使学生初步了解正弦、余弦概念;能够较正确地用sinA、cosA表示直角三角形中两边的比;熟记特殊角30°、45°、60°角的正、余弦值,并能根据这些值说出对应的锐角度数。
(二)能力训练点
逐步培养学生观察、比较、分析、概括的思维能力。
(三)德育渗透点
渗透教学内容中普遍存在的运动变化、相互联系、相互转化等观点。
二、教学重点、难点
1.教学重点:使学生了解正弦、余弦概念。
2.教学难点:用含有几个字母的符号组sinA、cosA表示正弦、余弦;正弦、余弦概念。
三、教学步骤
(一)明确目标
1.引导学生回忆“直角三角形锐角固定时,它的对边与斜边的比值、邻边与斜边的比值也是固定的。”
2.明确目标:这节课我们将研究直角三角形一锐角的对边、邻边与斜边的比值——正弦和余弦。
(二)整体感知
只要知道三角形任一边长,其他两边就可知。
而上节课我们发现:只要直角三角形的锐角固定,它的对边与斜边、邻边与斜边的比值也固定。这样只要能求出这个比值,那么求直角三角形未知边的问题也就迎刃而解了。
通过与“30°角所对的直角边等于斜边的一半”相类比,学生自然产生想学习的欲望,产生浓厚的学习兴趣,同时对以下要研究的内容有了大体印象。
(三)重点、难点的学习与目标完成过程
正弦、余弦的概念是全章知识的基础,对学生今后的学习与工作都十分重要,因此确定它为本课重点,同时正、余弦概念隐含角度与数之间具有一一对应的函数思想,又用含几个字母的符号组来表示,因此概念也是难点。
在上节课研究的基础上,引入正、余弦,“把对边、邻边与斜边的比值称做正弦、余弦”。如图6-3:
请学生结合图形叙述正弦、余弦定义,以培养学生概括能力及语言表达能力。教师板书:在△ABC中,∠C为直角,我们把锐角A的对边与斜边的比叫做∠A的正弦,记作sinA,锐角A的邻边与斜边的比叫做∠A的余弦,记作cosA.
若把∠A的对边BC记作a,邻边AC记作b,斜边AB记作c,则
引导学生思考:当∠A为锐角时,sinA、cosA的值会在什么范围内?得结论0
教材例1的设置是为了巩固正弦概念,通过教师示范,使学生会求正弦,这里不妨增问“cosA、cosB”,经过反复强化,使全体学生都达到目标,更加突出重点。
例1 求出图6-4所示的Rt△ABC中的sinA、sinB和cosA、cosB的值。
学生练习1中1、2、3.
让每个学生画含30°、45°的直角三角形,分别求sin30°、sin45°、sin60°和cos30°、cos45°、cos60°.这一练习既用到以前的知识,又巩固正弦、余弦的概念,经过学习亲自动笔计算后,对特殊角三角函数值印象很深刻。
例2 求下列各式的值:
为了使学生熟练掌握特殊角三角函数值,这里还应安排六个小题:
(1)sin45°+cos45; (2)sin30°•cos60°;
在确定每个学生都牢记特殊角的三角函数值后,引导学生思考,“请大家观察特殊角的正弦和余弦值,猜测一下,sin20°大概在什么范围内,cos50°呢?”这样的引导不仅培养学生的观察力、注意力,而且培养学生勇于思考、大胆创新的精神。还可以进一步请成绩较好的同学用语言来叙述“锐角的正弦值随角度增大而增大,余弦值随角度增大而减小。”为查正余弦表作准备。
(四)总结、扩展
首先请学生作小结,教师适当补充,“主要研究了锐角的正弦、余弦概念,已知直角三角形的两边可求其锐角的正、余弦值。知道任意锐角A的正、余弦值都在0~1之间,即
0 还发现Rt△ABC的两锐角∠A、∠B,sinA=cosB,cosA=sinB.正弦值随角度增大而增大,余弦值随角度增大而减小。” 四、布置作业 教材习题中A组3. 预习下一课内容。 五、板书设计 一、教学目标: 1。经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系。 2。理解抛物线交x轴的点的个数与一元二次方程的根的个数之间的关系,理解何时方程有两个不等的实根、两个相等的实数和没有实根。 3。能够利用二次函数的图象求一元二次方程的近似根。 二、教学重点、难点: 教学重点: 1。体会方程与函数之间的联系。 2。能够利用二次函数的图象求一元二次方程的近似根。 教学难点: 1。探索方程与函数之间关系的过程。 2。理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系。 三、教学方法:启发引导 合作交流 四:教具、学具:课件 五、教学媒体:计算机、实物投影。 六、教学过程: [活动1] 检查预习 引出课题 预习作业: 1。解方程:(1)x2+x—2=0; (2) x2—6x+9=0; (3) x2—x+1=0; (4) x2—2x—2=0。 2。 回顾一次函数与一元一次方程的关系,利用函数的图象求方程3x—4=0的解。 师生行为:教师展示预习作业的内容, 指名回答,师生共同回顾旧知,教师做出适当总结和评价。 教师重点关注:学生回答问题结论准确性,能否把前后知识联系起来,2题的格式要规范。 设计意图:这两道预习题目是对旧知识的回顾,为本课的教学起到铺垫的作用,1题中的三个方程是课本中观察栏目中的三个函数式的变式,这三个方程把二次方程的根的三种情况体现出来,让学生回顾二次方程的相关知识;2题是一次函数与一元一次方程的关系的问题,这题的设计是让学生用学过的熟悉的知识类比探究本课新知识。 [活动2] 创设情境 探究新知 问题 1。课本P16 问题。 2。结合图形指出,为什么有两个时间球的高度是15m或0m?为什么只在一个时间球的高度是20m? (结合预习题1,完成课本P16 观察中的题目。) 师生行为:教师提出问题1,给学生独立思考的时间,教师可适当引导,对学生的解题思路和格式进行梳理和规范;问题2学生独立思考指名回答,注重数形结合思想的渗透;问题3是由学生分组探究的,这个问题的探究稍有难度,活动中教师要深入到各个小组中进行点拨,引导学生总结归纳出正确结论。 二次函数y=ax2+bx+c的图象和x轴交点的坐标与一元二次方程ax2+bx+c=0的根有什么关系? 二次函数y=ax2+bx+c的图象和x轴交点 一元二次方程ax2+bx+c=0的根 一元二次方程ax2+bx+c=0根的判别式=b2—4ac 两个交点 两个相异的实数根 b2—4ac 0 一个交点 两个相等的实数根 b2—4ac = 0 没有交点 没有实数根 b2—4ac 0 教师重点关注: 1。学生能否把实际问题准确地转化为数学问题; 2。学生在思考问题时能否注重数形结合思想的应用; 3。学生在探究问题的过程中,能否经历独立思考、认真倾听、获得信息、梳理归纳的过程,使解决问题的方法更准确。 设计意图:由现实中的实际问题入手给学生创设熟悉的问题情境,促使学生能积极地参与到数学活动中去,体会二次函数与实际问题的关系;学生通过小组合作分析、交流,探求二次函数与一元二次方程的关系,培养学生的合作精神,积累学习经验。 [活动3] 例题学习 巩固提高 问题: 例 利用函数图象求方程x2—2x—2=0的实数根(精确到0。1)。 师生行为:教师提出问题,引导学生根据预习题2独立完成,师生互相订正。 教师关注:(1)学生在解题过程中格式是否规范;(2)学生所画图象是否准确,估算方法是否得当。 设计意图:通过预习题2的铺垫,同学们已经从旧知识中寻找到新知识的生长点,很容易明确例题的解题思路和方法,这样既降低难点且突出重点。 [活动4] 练习反馈 巩固新知 问题:(1) P97。习题 1、2(1)。 师生行为:教师提出问题,学生独立思考后写出答案,师生共同评价;问题(2)学生独立思考后同桌交流,实物投影出学生解题过程,教师强调正确解题思路。 教师关注:学生能否准确应用本节课的知识解决问题;学生解题时候暴露的共性问题作针对性的点评,积累解题经验。 设计意图:这两个题目就是对本节课知识的巩固应用,让新知识内化升华,培养数学思维的严谨性。 [活动5] 自主小结,深化提高: 1。通过这节课的学习,你获得了哪些数学知识和方法? 2。这节课你参与了哪些数学活动?谈谈你获得知识的方法和经验。 师生活动:学生思考后回答,教师对学生的错误予以纠正,不足的予以补充,精彩的适当表扬。 设计意图: 1。题促使学生反思在知识和技能方面的收获; 2。题让学生反思自己的学习活动、认知过程,总结解决问题的策略,积累学习知识的`方法,力求不同的学生有不同的发展。 [活动6] 分层作业,发展个性: 1。(必做题)阅读教材并完成P97 习题21。2: 3、4。 2。(备选题)P97 习题21。2:5、6 设计意图:分层作业,使不同层次的学生都能有所收获。 七、教学反思: 1。注重知识的发生过程与思想方法的应用 《用函数的观点看一元二次方程》内容比较多,而课时安排只一节,为了在一节课的时间里更有效地突出重点,突破难点,按照学生的认知规律遵循教师为主导、学生为主体的指导思想,本节课给学生布置的预习作业,从学生已有的经验出发引发学生观察、分析、类比、联想、归纳、总结获得新的知识,让学生充分感受知识的产生和发展过程,使学生始终处于积极的思维状态中,对新的知识的获得觉得不意外,让学生跳一跳就可以摘到桃子。 探究抛物线交x轴的点的个数与一元二次方程的根的个数之间的关系及其应用的过程中,引导学生观察图形, 从图象与x轴交点的个数与方程的根之间进行分析、猜想、归纳、总结,这是重要的数学中数形结合的思想方法,在整个教学过程中始终贯穿的是类比思想方法。这些方法的使用对学生良好思维品质的形成有重要的作用,对学生的终身发展也有一定的作用。 2。关注学生学习的过程 在教学过程中,教师作为引导者,为学生创设问题情境、提供问题串、给学生提供广阔的思考空间、活动空间、为学生搭建自主学习的平台;学生则在老师的指导下经历操作、实践、思考、交流、合作的过程,其知识的形成和能力的培养相伴而行,创造海阔凭鱼跃,天高任鸟飞的课堂境界。 3。强化行为反思 反思是数学的重要活动,是数学活动的核心和动力,本节课在教学过程中始终融入反思的环节,用问题的设计,课堂小结,课后的数学日记等方式引发学生反思,使学生在掌握知识的同时,领悟解决问题的策略,积累学习方法。说到数学日记,数学日记就是学生以日记的形式,记述学生在数学学习和应用过程中的感受与体会。通过日记的方式,学生可以对他所学的数学内容进行总结,写出自己的收获与困惑。数学日记该如何写,写什么呢?开始摸索写数学日记的时候,我根据课程标准的内容给学生提出写数学日记的简单模式:日记参考格式:课题;所涉及的重要数学概念或规律;理解得最好的地方;不明白的或还需要进一步理解的地方;所涉及的数学思想方法;所学内容能否应用在日常生活中,举例说明。通过这两年的摸索,我把数学日记大致分为:课堂日记、复习日记、错题日记。 4。优化作业设计 作业的设计分必做题和选做题,必做题巩固本课基础知识,基本要求;选做题属于拓广探索题目,培养学生的创新能力和实践能力。 一、素质教育目标 (一)知识教学点 使学生了解一个锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系。 (二)能力训练点 逐步培养学生观察、比较、分析、综合、抽象、概括的逻辑思维能力。 (三)德育渗透点 培养学生独立思考、勇于创新的精神。 二、教学重点、难点 1.重点:使学生了解一个锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系并会应用。 2.难点:一个锐角的正弦(余弦)与它的余角的余弦(正弦)之间的关系的应用。 三、教学步骤 (一)明确目标 1.复习提问 (1)、什么是∠A的正弦、什么是∠A的余弦,结合图形请学生回答。因为正弦、余弦的概念是研究本课内容的知识基础,请中下学生回答,从中可以了解教学班还有多少人不清楚的,可以采取适当的补救措施。 (2)请同学们回忆30°、45°、60°角的正、余弦值(教师板书). (3)请同学们观察,从中发现什么特征?学生一定会回答“sin30°=cos60°,sin45°=cos45°,sin60°=cos30°,这三个角的正弦值等于它们余角的余弦值”。 2.导入新课 根据这一特征,学生们可能会猜想“一个锐角的正弦(余弦)值等于它的余角的余弦(正弦)值。”这是否是真命题呢?引出课题。 (二)、整体感知 关于锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系,是通过30°、45°、60°角的正弦、余弦值之间的关系引入的,然后加以证明。引入这两个关系式是为了便于查“正弦和余弦表”,关系式虽然用黑体字并加以文字语言的证明,但不标明是定理,其证明也不要求学生理解,更不应要求学生利用这两个关系式去推证其他三角恒等式。在本章,这两个关系式的用处仅仅限于查表和计算,而不是证明。 (三)重点、难点的学习和目标完成过程 1.通过复习特殊角的三角函数值,引导学生观察,并猜想“任一锐角的正弦(余弦)值等于它的余角的余弦(正弦)值吗?”提出问题,激发学生的学习热情,使学生的思维积极活跃。 2.这时少数反应快的学生可能头脑中已经“画”出了图形,并有了思路,但对部分学生来说仍思路凌乱。因此教师应进一步引导:sinA=cos(90°-A),cosA=sin(90°-A)(A是锐角)成立吗?这时,学生结合正、余弦的概念,完全可以自己解决,教师要给学生足够的研究解决问题的时间,以培养学生逻辑思维能力及独立思考、勇于创新的精神。 3.教师板书: 任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值。 sinA=cos(90°-A),cosA=sin(90°-A). 4.在学习了正、余弦概念的基础上,学生了解以上内容并不困难,但是,由于学生初次接触三角函数,还不熟练,而定理又涉及余角、余函数,使学生极易混淆。因此,定理的应用对学生来说是难点、在给出定理后,需加以巩固。 已知∠A和∠B都是锐角, (1)把cos(90°-A)写成∠A的正弦。 (2)把sin(90°-A)写成∠A的余弦。 这一练习只能起到巩固定理的作用。为了运用定理,教材安排了例3. (2)已知sin35°=,求cos55°; (3)已知cos47°6′=,求sin42°54′. (1)问比较简单,对照定理,学生立即可以回答。(2)、(3)比(1)则更深一步,因为(1)明确指出∠B与∠A互余,(2)、(3)让学生自己发现35°与55°的角,47°6′分42°54′的角互余,从而根据定理得出答案,因此(2)、(3)问在课堂上应该请基础好一些的同学讲清思维过程,便于全体学生掌握,在三个问题处理完之后,将题目变形: (2)已知sin35°=,则cos______= (3)cos47°6′=,则sin______=,以培养学生思维能力。 为了配合例3的教学,教材中配备了练习题2. (2)已知sin67°18′=,求cos22°42′; (3)已知cos4°24′=,求sin85°36′. 学生独立完成练习2,就说明定理的教学较成功,学生基本会运用。 教材中3的设置,实际上是对前二节课内容的综合运用,既考察学生正、余弦概念的掌握程度,同时又对本课知识加以巩固练习,因此例3的安排恰到好处。同时,做例3也为下一节查正余弦表做了准备。 (四)小结与扩展 1.请学生做知识小结,使学生对所学内容进行归纳总结,将所学内容变成自己知识的组成部分。 2.本节课我们由特殊角的正弦(余弦)和它的余角的余弦(正弦)值间关系,以及正弦、余弦的概念得出的结论:任意一个锐角的正弦值等于它的余角的余弦值,任意一个锐角的余弦值等于它的余角的正弦值。 四、布置作业 教材习题组4、5. 五、板书设计次函数的教学设计【第三篇】
九年级数学上册二次函数教案2021模板【第四篇】
下一篇:槐乡的孩子教学设计精编3篇