组合图形的面积教学设计 组合图形的面积教学设计(优质8篇)

网友 分享 时间:

【导言】此例“组合图形的面积教学设计 组合图形的面积教学设计(优质8篇)”的教学资料由阿拉题库网友为您分享整理,以供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载支持吧!

《组合图形面积》教案【第一篇】

第五单元组合图形面积

1. 组合图形面积

教学内容:组合图形面积

教材第75页的内容

教学目标: 1.在自主探索的活动中,理解计算组合图形面积的多种方法。

2.能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。

3.能运用所学的知识,解决生活中组合图形的实际问题。:教学重点: 能根据条件求组合图形的面积。

教学难点:理解分解图形时简单图形的差。

教具学具:多媒体课件和长方体、正方体、平行四边形、梯形、三角形纸片。

教学方法:先学后教,当堂训练

教学过程:

教师指导与教学过程 学生学习活动过程 设计意图

一、在拼图活动中认识组合图

1、同学们,我们已经认识了长方形、正方形、平等四边形以及三角形,下面请同学们拿出长方形、正方形,请你用这些图形拼一个复杂的图形,并说一说像什么。

2、请学生将拼出的各式各样的图形,介绍给大家:你拼的图形什么?二、在探索活动中寻找计算方法。

1、教师出示图形

学生拿出课前准备的图形,进行拼图操作活动。

学生拼出各种各样的图形,选出贴在黑板上。

指名回答:我拼的图形像我家楼梯的台阶,像一张方桌、客厅地面……

学生观察老师出示的图形,这幅图形象一张客厅的平面图。

学生讨论怎样算买多少平方米的地板?

通过这一操作活动,使学生从中体会到组合图形的组成特点。

让学生认识组合图形的形成以及特点。

让学生感受计算组合图形的必要性,并让探索的基础上,讨论得出计算组合图形

请大家看一看,老师也准备了一个图形。对,像一张客厅的平面图,现在要在上面铺地板。

2、提出问题

你们知道应该买多少平方米的地板吗?

只要求主面积,就知道买多少平方米的地板了。那么能直接算出来吗?

3、请同学们想一想,为什么要将图形进行分割,图形割后,可以转化为我们学过的图形进行计算。

学生动手算一算,想一想,不能直接算怎么办,动手画图,怎样他割。

学生介绍自己探索中采用的分割方法。

学生分别按照黑板上的方法计算主客厅的地板的面积。

学生发独立观察图并且解决问题,然后,集体汇报、订正。

面积的基本方法。从中体会到组合图形的特点。

让学生认识组合图形的形成以及特点。

让学生感受计算组合图形的必要性。并让学生自主探索的基础上,讨论得出计算组合面积的基本方法。

从中体会到组合图形的特点。

板书设计:

五、图形的面积

组合图形面积

2.成长的脚印

教学内容:成长的脚印

教材第77、78页的内容

教学目标:1、 能正确估计不规则图形面积的大小。

2、能用数格子的方法,计算不规则图形的面积。

3、培养学生的空间观念,提高学生解决实际问题能力

教学重点: 用数格子的方法,计算不规则图形的面积。

教学难点:估计不规则图形的面积。

教具学具:多媒体课件和长方体、正方体、平行四边形、梯形、三角形纸片。

教学方法:课件演示,动手操作

教学过程:

教师指导与教学过程 学生学习活动过程 设计意图

一、创设情境,进行探索

1、同学们想一想,自己小时的脚印与现在的脚印有什么变化?

2、出示挂图

(1)板书:小华出生时,脚印的面积约是多少?(每小格是1cm2)

让学生数格子,先估计,再数格子,说一说怎样数格子。

(2)小华2岁时,脚印的面积约是多少?

约是46 cm2

学生回忆自己小时候的脚印,随着年龄的增长,脚印越来越大,学生仔细观察图想,怎样才能得到小华出生时脚印的面积约是多少?

数格子,估计面积的大小。

通过情境,联系自己引出新知,使学生对数学产生浓厚的兴趣。

让学生掌握估计,计算不规则图形的面积,培养学生空间观念的一个方面。

2、估计小华11岁的脚印面积的大小,并能用自己的脚印进行验证。

3、讨论估计小华两个年龄段脚印面积的大小。

脚印面积的大小与年龄的增长有着密切的关系。

二、布置练习

小组合作用自己的脚印验证一下这节课的结论。 在小组内说一说自己是怎样数格子算出小华脚印面积的大小。

学生将课前准

备好的自己脚印图拿出来数一数格子,约是多少面积。

学生想办法寻找验证的方法:还可以是把脚印看作长方形来计算,(近似的基本图形)

学生小组合作进行练习和测量,说说脚印在成长的过程中有什么规律。 通过两个年龄段脚印大小的估计,使学生明确脚印面积的大小与年龄的增长有着密切的关系。

让学生借助方格子这一载体来进行估计与计算。

随着年龄的增长脚的生长速度回放慢。

板书设计:探索活动——成长的脚印

(1)小华出生时,脚印的面积约是多少?(每个方格是1cm2)

(2)小华2岁时,脚印的面积约是多少?

(3)现在11岁,用自己的脚印估计约是多少?

教后反思:

3.尝试与猜测(一)

教学内容:

鸡兔同笼

教材第80页的内容

教学目标:

1. 通过学生对一些日常生活中的现象的观察与思考,从中发现一些特殊的规律。

2.通过列表举例、作图分析等方法,解决问题

3.培养学生分析问题的能力,渗透假设的数学设想。

教学重点: 通过观察前后图形中点的变化规律,推理得出后续图形中点的数量

教学难点:从不同角度分析,掌握解题的策略与方法。

教具学具:多媒体课件和题卡。

教学方法:观察、讨论,小组合作。

教学过程:

教师指导与教学过程 学生学习活动过程 设计意图

一、创设情境、揭示课题

1、鸡兔同笼,有20个头,54条腿,鸡、兔各有多少只?

2、从有1只鸡开始一个一个地试,把试的结果列成表格。

头/个 鸡/只 兔/只 腿/只

20 1 19 78

20 2 18 76

20 3 17 74

… … … …

20 13 7 54

3、根据鸡与兔共有20只的条件,假设鸡只有1只,那么兔就有19只,腿共有78条,腿多少?

4、先估计鸡与兔数量的可能范围,以减少举例的次数,再列出表格。 学生根据图上信息,独立思考,再与同学进行交流。

学生交流时:从1只鸡开始一个一个地试,把试的结果列成表格。

学生小组内将表格进行分析。

然后,学生比较后,再列第二张表格,减少举例的次数。

让学生采用取中例举的方法列表格。 在“鸡兔同笼”的活动中,通过列表举例,制图分析等方法,解决鸡与兔的数量问题。

在这样的逐一例举中,直至找到所求的答案。

能减少举例的次数

这样可以大大缩小举例的范围。

5、采用举取中例举的方法,由于鸡与兔共有20只,所以,各取1只,接着在举例中根据实际的数据情况确定举例的方向。再列表格。

6、画图的方法

先画出20个圆圈,代表20个头,接着假设全部是鸡,共画40条腿,剩余的14条腿,只要逐一添上就行了。

二、练习巩固

1、数据稍变化,再画图方法完成。

2、解决练一练,2、3、4题,用最快的方法解决。 说一说这样有什么好处。

让学生动手画图,用画圆圈代表20个头,看谁画的快,然后说一说自己的想法。

学生做练习,完成练一练1—4题先独立解决,然后小组交流,

最后全班交流。 这是比较形象的一种方法,适合小学生理解,能很快发现鸡与兔的数量。

指导学生开展练习,可采用举例的方法,画图的方法。

板书设计:          尝试与猜测

鸡兔同笼,有20个头,54条腿,鸡,兔各多少只?

列表1、(略)

2、(略)

教学反思:

3.尝试与猜测(二)

教学内容:

点阵中的规律

教材第82、83页的内容

教学目标:

1. 通过观察前后图形中点的变化情况,从而推导出后续图形点的数量;帮助学生建立数学模型。

2.在活动中培养分析、推理的思维能力。

教学重点: 是引导学生发现与概括规律

教学难点:总结概括规律。

教具学具:多媒体课件和题卡、正方形纸片。

教学方法:观察、讨论,小组合作。

教学过程:

教师指导与教学过程 学生学习活动过程 设计意图

一、指导学生观察所提供图形的基本形状。

1、提供的四个图形的均是三角形,第一个图形除外。

板书:1点字的个数是如何增加的?

2、观察四个图形均是正方形(第一个除外)你能写出算式吗?

1×1 2×2  3×3  4×4

□×□……

3、第三、四组的四个图形请示去自己去探索,发现规律。

二、指导学生观察前后图 学生观察提供的第一组点字图,交流点字的个数是如何增加的,然后用算式表示出来。

学生观察第二组四个图形,点字的个数有什么变化,在小组内说一说,然后用算式表示出来。

学生独立观察思考这两组图形点不变化的情况,有什么规律。 引导学生观察所给图形的基本形状及点字变化情况。

学生通过观察前后图形中点的变化情况,从而推导出后续图形点的数量。

引导学生观察前后图形点的个数是如何增加的。

形点的个数是如何增加的。

1、点字图是三角形的点字个数后一层比前一层多。

2、正文形、长方形点子数是成倍增加。

3、第(4)组图点子数是怎样变化的。

三、指导学生观察前后的算式。

仅观察图形并不能直接发现规律,并与图形对应起来。

四、练习巩固。

第1题,有两小题都是根据图形的变化的特点,推理出后续的图形。

第二题,是观察图形排列的变化

学生先独立思考:各图形点子个数是如何增加的,然后小组内交流,最后全班进行交流。

学生补充完算式,找出规律再写出一个算式来。

先让学生独立思考,然后组织学生进行交流。

通过这样的观察,也能知道后面图形排列的特点,从而计算出后面图形点的数量。

根据图形变化发现这一变化规律。

板书设计:          点阵中的规律

教学反思:

《组合图形面积》教案【第二篇】

组合图形面积是学生学习了长方形、正方形、平行四边形、三角形与梯形的面积计算的基础上进行教学的,是这些知识的发展,也是日常生活中经常需要解决的问题。在教学过程中,主要让学生在操作活动中认识组合图形的形成及其特点,让学生自主解决组合图形面积计算的问题,并能运用所学知识解决日常生活中一些组合图形面积的计算问题。

在让学生动手操作,自主探究如何使组合图形转化为已学过的基本图形的过程中,首先让学生把这个图形分成我们已学过的图形,通过画辅助线表示出来,如果认为有几种分法,就分别在图形上表示出来。接着让学生来说说自己的做法,通过投影展示学生的分法(以分割成两个长方形为例),第一,你是怎样分的?(分割成两个长方形);第二,长方形的面积公式是怎样的?(长乘宽);第三,要计算第一个长方形的面积,长是多少,宽是多少?要计算第二个长方形的面积,长是多少,宽是多少?在这个环节中,学生基本上都能够运用分割或添补法把组合图形转化为所学过的基本图形,但在展示学生分法时,忘记了将在巡堂时发现的个别学生的分法是由于找不到相关条件无法计算图形面积也进行展示和集体讨论为什么,这是不足的地方(如果当时在这个环节中,让学生充分展示汇报不同的分法后,教师接着引导学生总结优化出哪种分法更利于我们计算这个组合图形的面积或者哪种分法计算这个组合图形的面积更简单,然后就让学生用这种方法来计算图形的面积,可能后面的环节就不会不够时间)。学生汇报了不同的分法后,就让学生用自己喜欢的方法去进行图形的面积计算,然后让学生汇报展示,从中小结优化出那种分割法或添补法计算这个组合图形的面积更简单。这个环节花的时间比较多,跟前面的环节有类似,结果后面的时间很紧。因此在今后教学中应要多注意教学环节之间的内容设计,尽量紧凑,及时发现问题和作出反馈。

《组合图形的面积》数学教案【第三篇】

教材分析:

《组合图形面积》是义务教育课程标准实验教科书(北师大版)五年级数学上册第五单元中的一节内容(北师大版义务教育课程标准实验教科书五年级数学上册第7576页的内容),这一内容是在学生已经学习了长方形与正方形,平行四边形、三角形与梯形的面积计算的基础上,学习组合图形面积,一方面可以巩固已学的基本图形,另一方面则能将所学的知识进行综合,提高学生的综合能力,发展学生的空间观念,为以后立体图形的学习做好铺垫。

教学目标:

知识目标

1、在自主探索的活动中,理解计算组合图形面积的多种方法。

2、能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。

3、能运用所学的知识,解决生活中有关组合图形的实际问题。

过程和方法

让学生在自主探索的基础上进行合作交流,从而归纳组合图形面积的计算方法。

情感、态度与价值观

1、结合具体的题例,感受计算组合图形面积的必要性,产生积极的数学学习情感。

2、渗透转化的数学思想和方法。

教学重点:

学生能够通过自己的动手操作,掌握用分割法和添补法求组合图形面积的计算方法。

教学难点:

理解计算组合图形面积的多种计算方法,根据图形之间的联系和一定的条件,分成已学过的图形,选择有效的方法求组合图形的面积。

教学准备:

多媒体课件和组合图形图片。

教学过程:

一、激趣导入、复习铺垫、认识组合图形

1、介绍笑笑和她家的新房子

师:同学们,请看大屏幕,你们还记得她是谁吗?欢迎她今天和我们一起来学习吗?她还想把她家那漂亮的房子介绍给同学们呢!我们先听听她怎么说,好吗?(课件出示笑笑和她家的新房子,笑笑说:欢迎!欢迎!同学们,这是我家的新房子,漂亮吧?)

2、引导学生观察,复习有关平面图形面积的计算公式

师:从这座房子中可以找到哪些平面图形?会求它们的。面积吗?

3、欣赏图片(课件出示一组图片)

师:请观察这几个图形,它们有什么共同的特征呢?(指名回答)

4、教师总结,揭示课题并板书

师:说得真好!像这样由两个或两个以上的简单的图形组合而成的一种图形我们把它称为组合图形(板书:组合图形),今天我们就一起来探究组合图形面积的计算(板书:面积)

二、创设情境、探究新知

笑笑家的新房正在装修,但却遇到了几个难题,需要同学们帮帮忙,你们愿意吗?那我们就一起来看看吧。(课件出示笑笑和她家客厅的平面图,笑笑说:这是我家的客厅,计划给它铺上地板。你们来得真巧,快来帮我算算,我家至少要买多大面积的地板呢?)

1、估计地板的面积

请同学们先估一估她家至少要买多大面积的地板呢?(学生说数据,师板书)

2、采用不同的方法求客厅的面积。

同学们估的数据都不大一样,谁估得最接近呢?下面我们就一起来验证一下吧!请同学们观察这个图形,这是一个(组合图形),这样的图形的面积我们以前学过了吗?你会用什么方法来求它的面积呢?请把你的想法用虚线在客厅平面图中表示出来。再与同桌说说自己的想法。

(1)生动手画图

(2)汇报交流:同学们做好了吗?现在谁来说说你的想法?

3、师生归纳方法并比较

(1)观察找特点

根据学生的汇报小结四种基本方法(课件演示)(师小结:分成的图形越简洁,其解题的方法也将越简单。所以我们以后在计算组合图形的面积时要学会选择简便的方法进行计算。)

(2)引导比较,对方法进行分类,找出最简单的方法

师:请同学们观察这三种方法,它们有什么相同的特点呢?像这样的方法我们把它称为分割法添补法(板书)它们都是计算组合图形常用的方法。(师小结:其实不管是分割法还是添补法,我们都是为了一个共同的目的,那就是把这个组合图形转化成已学过的图形,就容易计算出它的面积了。)

(3)现在,你能计算这个客厅地板的面积了吧!请根据下面的提示求出这个客厅地板的面积。(课件出示,学生齐读:要算每个小图形的面积分别需要哪些条件?请找一找,并标出来,再列式计算。)

(4)学生独立计算,四人板演。

(5)汇报交流,集体订正。

(6)引导比较(同学们现在我们已经计算出了这个组合图形的面积,请把计算出的正确答案与刚才同学们估计的数据比较一下,谁估得最接近呢?(表扬最接近的同学)

4、归纳算法

刚才我们帮笑笑计算出了客厅的面积即组合图形的面积。现在一起来回忆一下计算组合图形面积的计算过程。

师生齐说:刚才我们先用分割或添补的方法把组合图形转化成了以前学过的平面图形,然后找出计算每个小图形所需的条件,再计算出组合图形的面积。

三、实际应用、解决问题

1、画一画:你能用最少的线段把下面各个图形分成已学过的图形吗?(课件出示)

(1)学生拿出先准备好的图形,动手画

(2)展示交流

2、计算墙壁的面积

观察图形选择方法独立计算汇报交流

同学们帮笑笑解决了难题,相信她会很感激大家的,我们一起听听她怎么说。[课件出示,笑笑说:同学们,你们真厉害!我在这里谢谢大家了。请大家再帮我一个忙吧,我们家想把这面墙粉刷一遍,你们愿意帮我算算吗?

(1)需要粉刷的面积一共是多少平方米?

(2)如果每平方米需要千克涂料,一共要用多少千克涂料?

观察图形选择方法独立计算汇报交流

3、求门油漆的面积。

师:同学们以自己的聪明才智帮笑笑又解决了一个难题,我们再听听她怎么说。课件出示:笑笑说,同学们,你们个个都是好样的。可还得请你们再帮我一个忙,我家要油漆6扇门的外面(门的形状如图,单位:米)

(1)需要油漆的面积一共是多少?

(2)如果油漆每平方米需要药费5元,那么我家共要花费多少元?

四、归纳小结、提升知识

这节课你学会了什么?

(师小结:这节课我们学会了计算组合图形的面积,这部分知识在实际生活中是经常会用到的,相信同学们都能很好的运用这些知识,解决一些实际问题。)

数学组合图形的面积教案【第四篇】

教学内容:

《义务教育课程标准实验教科书数学》(人教版)五年级上册“组合图形的面积”

教学目标:

1、明确组合图形的意义,掌握用分解法或添补法求组合图形的面积。

2、能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。

3、渗透转化的教学思想,提高学生运用新知识解决实际问题的能力,在自主探索活动中培养他们的创新精神。

教学重点:

在探索活动中,理解组合图形面积计算的多种方法,会利用正方形、长方形、平行四边形、三角形、梯形这些平面图形面积来求组合图形的面积。

教学难点:

根据图形特征采用什么方法来分解组合图形,达到分解的图形既明确而又准确求出它的面积。

教学准备:

课件、图片等。

教学过程:

一、创设情境,引导探索

师:大家搜集了许多有关生活中的组合图形的图片,谁来给大家展示并汇报一下。(指名回答)

生1:这枝铅笔的面是由一个长方形和一个三角形组成的。

生2:这条小鱼的面是由两个三角形组成的。

师:同桌的同学互相看一看,说一说,你们搜集的组合图形分别是由哪些图形组成的?

设计意图:根据学生已有的知识经验和生活经验,让学生在课前进行搜集生活中的组合图形的图片,学生热情高涨、兴趣盎然。通过学生查、拼、摆、画、剪、找等活动,使学生在头脑中对组合图形产生感性认识。

二、探索活动,寻求新知

师:生活中有许多组合图形,老师准备了3幅,大家观察一下,这些组合组图形是由哪些简单图形组成的?如果求它们的面积可以怎样求?

图一图二图三课件逐一出示图一、图二、图三,让学生发表意见。

生1:小房子的表面是由一个三角形和一个正方形组成的。

生2:风筝的面是由四个小三角形组成的。

生3:队旗的面是由一个梯形和一个三角形组成的。……

师:这几个都是组合图形,通过大家的介绍,你觉得什么样的图形是组合图形?生1:由两个或两个以上的图形组成的是组合图形。

生2:有几个平面图形组成的图形是组合图形。……

师小结:组合图形是由几个简单的图形组合而成的。

图一:是由三角形、长方形、加上长方形中间的正方形组成的,

面积=三角形面积+长方形面积-正方形面积

图二:是由两个三角形组成的。

面积=三角形面积+三角形面积

图三:作辅助线使它分成一个大梯形和一个三角形。

方法一:是由两个梯形组成的。

师:为什么要分成两个梯形?怎样分成两个梯形?

引导学生说出将它转化成以学过的简单图形以及在图中作辅助线。

师:是的,可以用作辅助线的方法将它转化成以前学过的简单图形来计

(板书:转化)。大家想想,用辅助线的方法还有不同的作法吗?

方法二:作辅助线补成一个长方形,使它变成一个大长方形减去一个三角形。

方法三:作辅助线使它分成一个大梯形和一个三角形。

(课件分别演示这三种方法)

分割法添补法

师:数学中我们习惯用分割法或添补法,用辅助线来把一个复杂的组合图形转

变成比较简单的图形,为计算带来简便。画辅助线时要注意画虚线,以及用铅笔和直尺作图。

板书:分割法或添补法(转化):分解成简单图形。

师:请你找一找生活中哪些地方的表面有组合图形呢?(学生自由回答,对学生们正确的回答要给予好的评价,特别是要鼓励不爱举手的学生讲一讲。注意座在后排的学生表现)

师:同学们认识组合图形了,那么大家还想了解有关组合图形的哪些知识?生1:我想了解组合图形的周长。

生2:我想知道组合图形的面积怎样计算。

这节课我们重点学习组合图形的面积。

设计意图:“方法是数学的行为、思想是数学的灵魂”,既然它们是由几个简单图形组合而成的,那么分解它们的。组成,就可以来个“原路返回”——分解成几个简单图形的和或差。培养学生灵活的分析问题解决问题的能力,帮助学生独立分析问题。潜意识的教学思想中既重“方法”又重“思想”。体现数学知识从“行为”到“灵魂”的内化过程。同时形成强烈的求知欲。

三、探讨例题,学习新知

师:同学们的表现真了不起。老师家这几天装修房子,要刷新墙体。刷新墙体的工人工资是平方米来计算的,请你们帮我算一算。(课件出示例4)

例4:右图表示的是一间房子侧面墙的形状。它的面积是多少平方米?

师:怎样才能计算出这个组合图形的面积呢?

先让学生思考,再动手计算。

交流汇报

方法一:把这个组合图形一分为二,一个是正方形,另一个是三角再分别算出正方形和三角形的面积,最后算出它们的面积和,就可以求出这个图形的面积。

师:这是一个不错的想法。要算每个简单图形的面积分别需要哪些条件?请找一找,并标出来。

指名学生找相应的条件。

在实物投影仪上展出示学生的答案

①5×5=25(平方米)

②5×2÷2=5(平方米)

③25+5=30(平方米)

答:房子侧面墙的面积是30平方米。

(注意检查做错的同学,找出错的原因。)

师:除了这种方法,还有同学用别的方法吗?

方法二:先把这个图形补上两个三角形,看作一个长方形,先算出长方的面积后,再减去两个小三角形的面积。

师:能找出每个简单图形的已知条件吗?让学生找相应的条件。展示学生答案

长方形:长:5+2=7米、宽:5米;三角形:底是2米,高是米。5×(5+2)-×2÷2×2

=35-5=30(平方米)

答:房子侧面墙的面积是30平方米。

方法三:把这个图形从顶点向下作一条垂线,就分成两个梯形,这两个梯形面积是相等的,所以只要求出一个梯形的面积再乘以2,就得到这个组合图形的面积。同样让学生找出计算梯形面积的相应已知条件。

展示学生的答案

(5+7)×÷2×2=30(平方米)答:房子侧面墙的面积是30平方米。

让学生发表意见。

小结:使用了分割法或添补法,作辅助线把组合图形转化成简单图形来计算面积。(也就是先把组合图形分解成已经学过的图形,然后分别求出它们的面积再相加。)

师:非常感谢大家为我解决了难题,在日常生活中,到处都有组合图形,我们计算面积时,根据“图形位移,面积不变”的道理,用辅助线把它进行割、补、拼转化成简单的图形,再计算出该组合图形的面积就方便多了,这些方法中有的简单,有的繁琐,如果没有要求多种方法的,我们尽量选择最简单的方法来计算。

设计意图:对于例题的教学,由于学生有了新课开始的拼组基础,每个学生

对求它的面积会有一定的思考,把自己所知道的方法在小组内说一说,通过四人小组一起来分一分、算一算,给学生充足的探索时间和机会,让学生进一步理解和掌握组合图形的计算方法,并引导学生寻找最简方法,实现方法的化。培养学生小组合作能力、空间想象能力,从而提高学生解决的能力。能充分利用刚学的学习方法解决实际问题。

四、利用新知,解决生活中的问题。

做一做

刚才同学们帮老师算了刷新墙的面积,客厅大概是下图这种形状。准备铺上地板砖,大家能帮老师计算一下客厅的总面积吗?小组合作,讨论完成,教师参与小组活动。

方法一:把组合图形分割成两个长方形。4×3+3×7=12+21=33(cm2)

方法二:分割成一个长方形和一个正方形。4×6+3×3=24+9=33(cm2)

第三种方法:分割成两个梯形。(3+7)×3÷2+(3+6)×4

7×6-3×3=42-9=33(cm2)

让学生说一说试用了什么方法?前三种使用了分割法,最后一种使用了添补法。

练习过程如上,分解图形如下。同学们真了不起,老师很感谢大家。孩子们利用今天所学的知识,做个助人为乐的学生,好吗?

现在你能帮工人叔叔算算这

个指示路牌的面积吗?

设计意图:

1、开放式练习,把枯燥无味的面积计算,溶入到丰富多彩的数学活动中,让学生知道数学与生活的密切联系,利用数学知识解决生活中的实际问题,同时对学生进行德育教育。

2、前边的练习后进生可能出现错误,有失败感。自己选择习题,可能选到自己会做的,从而能体会一些成功。对于优生,可能不满足前边练习的深度,自主选择较深的题目,能拓展新知。

五、课堂评价

师:这节课你学到了什么?

结束语:同学们在这节课表现非常出色!计算组合图形的面积,一般是把它们分割或添补成我们学过的简单图形,如长方形、正方形、三角形、梯形、平行四边形等,要注意根据已知条件分或补,再计算它们的面积。

设计意图:以板书来表现,学生通过试做汇报、交流观察。体现了重视学生的思维过程,将思维过程充分的暴露出来,体现了算法多样性,为学生提供了充分的参与空间;体现了对学生思维能力的培养,发展了学生的空间观念,提高了学生解决问题的能力。:

课堂检测A

1、这是我们学校将要开辟的一块草坪,如下图。由哪些简单图形组成的?你能算出它的面积吗?

现在有两家公司联系,A公司说种一平方米草要5元,B公司说种同样的草一共需要2500元。如果让你决定,你会选择哪家公司?

2、同学们,我们学校少先大队准备给每个班做一面“中队旗”,不知道该用多少布,想请大家帮忙,你们愿意吗?我们已经知道“中队旗”也是一个组合图形,现在请同学们根据图中提供的数据,选择自己喜欢的方法计算出用布的面积。我们比一比谁的方法更新颖、更快捷!

课堂检测B

1、在一块梯形的地中间有一个长方形的游泳池,其余的地方是草地。草地的面积是多少平方米?

想种上红花、黄花和绿草。一种设计方案如图。你能分别算出红花、黄花、绿草的种植面积吗?

答案:课堂检测A

1、50×33+35×12÷2

=1650+210

=1860(厘米)

2、33×26-26×13÷2

=758+169

=927(厘米)

课堂检测B

1、(40+70)×30÷2-30×15

=1650-450

=1200(厘米)

2、长方形地的面积:18×12=216(平方米)绿草面积(一半):216÷2=158(平方米)黄花面积:216÷4=58(平方米)红花面积:216÷4=58(平方米)

数学组合图形的面积教案【第五篇】

教学内容:

北师大教材五年级上册第一单元第一课时《组合图形面积》

学校及学生状况分析:

我校是白银市白银区的一所城区中心小校,多媒体设施比较齐全,可以进行课件演示及实物投影多媒体辅助教学,而且是北师大版五年级教材的使用学校。

组合图形面积是由直观走向抽象的一节内容,重在方法的挖掘。在教学中,不能以教师为中心来死搬硬套教材,应合理地利用了教材资源。使学生更宽泛地理解什么是组合图形,更大限度地激活每个学生寻求组合图形面积计算的思维动力,然后逐步展开有层次的思维训练,开阔学生的思维空间,鼓励学生积极探索。

教材分析:

组合图形面积是在长方形、正方形、平行四边形、三角形和梯形这五个基本图形的面积公式学习之后,进行的一种由形象到抽象的学习。解题的基本理念是将组合图形转化为基本图形进行计算,需要发散学生的思维,会分析图形的构成,能够正确分析图形的隐含数据条件,鼓励学生算法多样化。

本课教学目标:

1、知识与技能

(1)、在自主探索的活动中,理解计算组合图形面积的`多种方法。

(2)、能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。

(3)、能运用所学的知识,解决生活中组合图形的实际问题。

2、过程与方法:

让学生在自主探索的基础上进行合作交流,从而归纳组合图形面积的计算方法。

3、情感态度与价值观:

(1)、结合具体题例,感受计算组合图形面积的必要性,产生积极的数学学习情感。

(2)、渗透转化的数学思想和方法。

教学重难点及关键:

1、重点:掌握组合图形面积的计算方法。

2、难点:理解计算组合图形面积的多种方法。

3、关键:学会运用“分割”与“添补”的方法计算组合图形的面积。

课前准备:

基本图形卡片、七巧板以及多媒体课件

教学课时:

一课时

教学设计:

(一)观察动画,复习旧知,引出新知

1、观察动画,分析引入

(媒体出示由基本图形拼成的太阳、狗、房子、小鸡、花草树木等)

师:观察这幅图画,你发现了什么?

生:很多的基本图形,组成了很多的图形)[板书:基本图形]

师:这些由基本图形组合而成的图形,就叫做组合图形。[板书:组合图形]

2、复习基本图形面积公式

师:还记得我们都学过哪些基本图形吗?

(随着学生回答,按学习的顺序贴各个基本图形)

问:那谁还记得这些基本图形的面积公式?

(随着学生回答,在各个基本图形后面写公式)

师:真不错,看来同学们对面积公式知识的掌握相当扎实。那像这些组合图形,怎么求面积呢?有同学已经有想法了。今天这节课,我们一起来探索组合图形面积的计算方法?(板书:在组合图形后面增加“面积”)

(设计意图:通过拼图游戏,激发学生学习的兴趣,学生兴趣浓厚的动手操作,在操作过程中理解了组合图形的意义。使课堂一开始就进入了一种轻松的学习氛围。)

(二)动手拼图,初探方法

1、自拼图形,分析要素

师:拿出你的学具袋和做题纸。请一位同学来给大家读读要求吧。

请你从学具中任选两个基本图形,拼出一个组合图形,粘在答题纸的方框内。

边做边思考:

师:你拼的组合图形由什么基本图形组成的?这些基本图形的要素是什么?

师:现在,就请你挑出你喜欢的基本图形,来拼一个组合图形,并和小组内的同学讨论一下,怎么求你这个组合图形的面积呢?

(学生活动,教师巡视,指导画高。)

2、展示图形,分析条件

(学生分别介绍所拼的组合图形后,教师选择其中的一个作重点分析。)

师:现在,我们来看右面的组合图形(见右下图),它是由一个三角形和一个长方形组成的。有一条边既做三角形的底又做长方形的长,是公共边。

(强调公共边:既做长方形的长,又作三角形的底。)

3、打开思路,探索面积

师:怎样求一个组合图形的面积?

生:分另计算三角形与长方形的面积,然后相加。

组合图形的面积教学设计【第六篇】

学习目标:

1.知识目标:通过动手操作使学生理解组合图形的含义,理解并掌握组合图形的多种计算方法,并正确地计算组合图形的面积。

2.能力目标:通过学生自主探索,合作交流,激发学生的积极性和主动性。从而归纳组合图形面积的方法。

3.情感目标:在探索,实践活动中使学生获得成功的体验,感受数学知识的广泛应用。渗透转化的数学思想和方法。

教学重点:能根据条件求组合图形的面积。

教学难点:理解分解图形时简单图形的差。

教具准备:图形卡片

教学过程:

一、联系学生生活,引入新课。

数学教学,要紧密联系学生的生活实际。新课开始之前,我由猜图形引出:

1.实物投影:同学们,你们说说这些图形像什么?

师:今天老师先和大家玩一个猜图形的小游戏。出示图形:猜猜它们像什么?

师:很简单,很容易吧!但是在这个简单的游戏中却蕴含着丰富的数学知识。今天就让我们一起去探索、去研究。

2.出示基本图形,从而复习已学过的基本知识。

师:在这两个拼成的图形中,有哪些是你认识的图形?梯形是哪里来的?还有一个学过的图形这里没有出现,它是什么呢?(贴出图形:正方形、长方形、三角形、梯形、平行四边形)

二、教学新课。

学生亲身体验和感知易于获得感性经验,提高实际操作能力。而观察、操作、讨论等都是数学活动中最常用的方法。因此,在教学过程中我尽量给学生创设更多的动手操作机会,提供丰富的材料,使他们可以亲自进行最广泛意义的实验、操作及通过观察结果、提出问题、讨论并自己寻找答案。

教学新课时,我首先让学生说一说、拼一拼、分一分。根据学生前面猜的结果,提出:自己用这些基本图形拼出自己喜欢的图案?

1.在拼图活动中认识组合图形。

师:同学们,不要小看了这五个基本平面图形,它能把我们带到神奇的图形世界,请你们也拼出一个你喜欢的图形。(独立完成)

师:同学们刚才拼出了各式各样的图形,那么,谁能来介绍一下,你拼出的图形像什么?用到了哪些学过的基本图形?

生:利用实物投影展示自己的作品。

师:同学们说得真好,那么请你们看一看老师和你们所拼的各种不同图形,它们有没有共同的特点呢?(生自由发言)

师:虽然拼出的图形它们的形状不同,但都是由几个简单的图形拼出来的,所以我们把这些图形叫作组合图形。(板书:组合图形)

师:大家做得真不错,都可以成为小设计师了。那你们能不能从组合图形中发现基本图形呢?出示两个图形。

师:说说这里面有你认识的图形吗?你是怎样看出来的?

师:大家说得都不错,那你能不能做一做 ?(在题纸上做一做)

师:学生展示交流结果。

(选择虚线最合适,和图形中的实线加以区分。帮助我们解决组合图形面积的计算的这条虚线我们就叫它辅助线。)

师:刚才大家的学习都很积极努力,接下来要继续加油呀!

2.生:找到了组合图形和基本图形之间的关系,同时也理解了什么是组合图形。这时候,学生的积极性比较高,充分看出了让学生参与教学活动的教学效果。但是,在小组活动时,有的学生可能没有充分发挥自己的才能。

我看到学生比较积极,立刻抓住这个机会,对他们说:“你们想不想知道这些组合图形的面积呢?”孩子们齐声说道:“想!”于是我就利用课件出示了书中的例题,于是就分小组寻找解决组合图形面积的方法。

3.在探索活动中寻找计算方法。出示例题:

师:小华家买了新房子,计划在客厅铺地板,请大家看一看,出示图形。

师:现在请你估计一下,客厅的面积有多大?

师:这个图形实际上就是一个什么图形?

师:要想做到不浪费,不少买,我们应该怎么办呢?(板书:面积)

师:那么你想怎样求这个图形的面积呢?

学生立即四人一组开始活动,情绪高涨,主动学了起来。有的组找到了不同的方法。但有的组人数较多,没有参与到其中,浪费了时间,这是我在教学中需要改进的地方。

小组活动:请同学们利用自己手上的题纸,分一分,算一算。

师:谁能来代表你们组说说是怎样计算这个图形的面积呢?那么为什么要把它分成两个长方形或其他图形呢?(学生逐步介绍了自己探索中采用的分割方法)

学生很喜欢在课堂上留给他们自己学习的空间这样的学习方式。接着就是让孩子们展示自己的研究结果,并且说出自己的想法。根据学生所说发给他们小贴画,学生非常高兴。根据他们自主学习的过程,问道:“你发现了什么?”从而,总结出不同的最基本的求组合图形的方法。

师:根据不同的方法,请学生给这些方法分一分类。

师:板书:分割法和添补法。

师:在这些方法中,第几种解题方法计算起来比较快?为什么?(实物投影展示几种方法)

师:说说你喜欢那种方法?为什么?

师:虽然我们采用了不同的方法解决了这个问题,但是结果都是一样的,因此,在解题过程中要多角度思考问题,寻求多种方法解决问题。

利用比较,深化认识。让学生对照板书或者手中的不同方法,让学生想:你会选择哪种方法,为什么?从中选择最优的方法。

让学生在生活中找一找组合图形,因为组合在实际生活中应用比较广泛。我觉得学生有一种对知识的渴求,也喜欢在生活找到所学的知识。

三、习题设计:

1.出示图形进行练习

试一试:一张硬纸板剪下4个边长是4厘米的小正方形后,可以做成一个没有盖子的盒子。

(1)这张硬纸板还剩下多大的面积?

(2)有一面墙,粉刷这面墙每平方米需用千克涂料,一共要用多少千克涂料?

(3)选择你喜欢的组合图形,计算出它的面积(生活中你所见到的组合图形)。

四、小结。

师:说说你今天最大的收获。关于组合图形的面积的计算,你还有什么不懂或需要提醒大家注意的地方?

把学到的知识应用到生活中去,解决生活中的问题,这才是根本目的。于是我出示了学校粉刷墙这道题以及自己选择身边的组合图形来算一算的这个问题,让今天的知识紧密地联系了学生的生活实际,这时要求学生独立完成,培养学生解决问题的能力。

组合图形的面积教学设计【第七篇】

一:教学目标

1、掌握组合图形面积计算的方法,并能正确进行计算。

2、培养学生识图的能力和综合运用有关知识的能力。

二:教学难点

能正确将一个组合图形进行分解,让学生学会这类题目的思考方法。

三:教学准备

组合图形纸片、 剪刀、 胶带

四:教学设想

以“妙”调趣,导入新课。让学生以原有的知识为基础,通过学生亲手的“拼”、“剪”将组合图形进行分解,计算出组合图形面积,从而掌握这类题的思考及解题方法。

五:教学过程

教师活动

数学组合图形的面积教案【第八篇】

教学内容:

92和93页练习十八

教学目标:

明确组合图形的意义;知道求组合图形的面积就是求几个图形面积的和(或差);能正确地进行组合图形面积计算,并能灵活思考解决实际问题。

教学过程:

一、复习。

“第一个图形是什么形?它的面积怎样计算?”学生口答,教师在长方形图的下面板书:S=ab

“第二个图形呢?”

......

学生分别口答后,教师在每个图的下面写出相应的计算面积的公式。

教师:计算这些图形的面积我们已经学会了,可是在实际生活中,有些图形是由几个简单的图形组合而成的,这就是我们今天要学习的内容,板书:组合图形面积的计算。

二、认识组合图形

1、让学生指出92页页的四幅图有哪些图形?

2、引导学生把下面的图形,组合成多边形(展示台上拼)

对学生的拼出的图形,有选择地出示其中的几个。(如下所示)

分别说出这些图形是由哪几个简单的图形组合而成。

师:怎样计算这些组合图形的面积呢?(板题)

二、组合图形面积的计算。

1.讨论计算上面拼成的组合图形的面积。(生板演其余每组完成一图)

订正,讨论第一图的两种方法。

5×5+5×6÷2[5+(5+6)]×5÷2

=25+15=16×5÷2

=40(平方厘米)=40(平方厘米)

2.在实际生活中,有些图形也是由几个简单的图形组合而成的(出示例1题目及图)。

图表示的是一间房子侧面墙的形状。

它的面积是多少平方米?

如果不分割能直接算出这个图形的面积吗?(引讨横虚线的`作用)怎样计算这个组合图形的面积呢?(讨论方法后,再打开书计算,同时指名板演)

5×5+5×2÷2

还能用其他的划分方法求出它的面积吗?(分组讨论〈WWW.〉)

汇报讨论结果。可能有下面情况。

[5+(2+5)]×(5÷2)÷2×2

小结:一个组合图形,可以用多种方法划分成几个已经学过的简单图形,再分别计算出这些图形的面积,求出组合图形的面积,但要注意分割图形时,应当考虑计算的方便,特别要有计算面积所必需的数据。(比如--图示,能容易找出所需的数据吗?)

三、巩固初步

1.做一做/书93页

2.练习十八/第1题

3.练习十八/第2题

(1)由中队旗引入

(2)算出它的面积。(单位:厘米)--可能有下面几种情况

S总=S梯×2S总=S长-S三

5.练习十八/第3、4题

四、拓展练习

练习十八8

课后记:

22 2642653
");