实用圆锥的体积教学设计及反思(通用5篇)

网友 分享 时间:

【写作参考】一篇好的范文往往能让您的写作事半功倍,下面是由阿拉题库网友为您分享的“实用圆锥的体积教学设计及反思(通用5篇)”优质范例,供您写作参考之用,轻松写作,远离加班熬夜,希望以下内容对您有所帮助,喜欢就下载支持吧!

圆锥的体积教学设计及反思【第一篇】

教学目的:使学生初步掌握圆锥体积的计算公式。

并能运用公式正确地计算圆锥的体积,发展学生的空间观念。

学具准备:等底等高的圆柱和圆锥,水和沙,多媒体课件。

教学时间:一课时。

教学过程:。

一、复习。

1、圆锥有什么特征?(课件出示)。

使学生进一步熟悉圆锥的特征:底面,侧面,高和顶点。

2、圆柱体积的计算公式是什么?

指名学生回答,并板书公式:“圆柱的体积=底面积×高”。同时渗透转化方法在数学学习中的应用。

二、导人新课。

出示一个圆锥形的谷堆,给出底面直径和高,让学生思考如何求它的体积。

三、新课。

1、教学圆锥体积的计算公式。

师:请大家回亿一下,我们是怎样得到圆柱体积的计算公式的?

指名学生叙述圆柱体积计算公式的推导过程,使学生明确求圆柱的体积是通过切拼成长方体来求得的。

师:那么圆锥的体积该怎样求呢?能不能也通过已学过的图形来求呢?

先让学生讨论一下用什么方法求,然后指出:我们可以通过实验的方法,得到计算圆锥体积的公式。

教师拿出等底等高的圆柱和圆锥各一个,“大家看,这个圆锥和圆柱有什么共同的地方?”

然后通过演示后,指出:“这个圆锥和圆柱是等底等高的,下面我们通过实验,看看它们之间的体积有什么关系?”

学生分组实验。

汇报实验结果。先在圆锥里装满水,然后倒入圆柱。正好3次可以倒满。

多指名说。

问:把圆柱装满一共倒了几次?

生:3次。

师:这说明了什么?

生:这说明圆锥的体积是和它等底等高的圆柱的体积的。

多找几名同学说。

师:圆柱的体积等于什么?

生:等于“底面积×高”。

引导学生想到可以用“底面积×高”来替换“圆柱的体积”,于是可以得到圆锥体积的计算公式。

师:用字母应该怎样表示?

然后板书字母公式:v=1/3sh。

师:在这个公式里你觉得哪里最应该注意?

1/3×19×12=76((立方厘米))。

答:这个零件体积是76立方厘米。

做一做:课件出示,学生回答后,教师订正。

1、一个圆锥的底面积是25平方分米,高是9分米,它的体积是多少?

2、已知圆锥的底面半径r和高h,如何求体积v?

3、已知圆锥的底面直径d和高h,如何求体积v?

4、已知圆锥的底面周长c和高h,如何求体积v?

5、一个圆锥的底面直径是20厘米,高是9厘米,它的体积是多少?

例2课件出示)在打谷场上,有一个近似于圆锥的小麦堆,测得底面直径是4米,高是米。每立方米小麦约重735千克,这堆小麦大约有多少千克?(得数保留整千克)。

判断:课件出示,学生回答后,教师订正。

1、圆柱体的体积一定比圆锥体的体积大()。

2、圆锥的体积等于和它等底等高的圆柱体积的()。

3、正方体、长方体、圆锥体的体积都等于底面积×高。()。

4、等底等高的圆柱和圆锥,如果圆柱体的体积是27立方米,那么圆锥的体积是9立方米()。

四、教师小结。

这节课我们学习了哪些知识?你还有什么问题吗?

五、作业。课本练习。

圆锥的体积教学设计及反思【第二篇】

1、使学生理解和掌握圆锥的特征及各部分名称。

2、使学生掌握测量圆锥的高的方法。

认识圆锥体,掌握圆锥体体积的计算方法。圆锥体体积的计算方法的推导。

圆锥体物品、生活中圆锥体的应用图片、资料。

今天我们来认识一种形状的物体——圆锥(板书课题)什么形状的物体是圆锥形的呢?

(实物呈现)。

我们把象这样的几何形体叫做圆锥体,简称圆锥。

师:请同学们拿出圆锥体模型,看一看、想一想,你都想知道有关圆锥的哪些知识?

生可能提出:

a、我想知道圆锥的特征。

b、我想知道圆锥有几条高?它的高指的是什么?

c、我想知道圆锥的侧面展开是什么形状的?

师:请同学们拿出圆锥体模型,看一看、摸一摸、玩一玩、也可以猜一猜你能发现什么?

a我们发现圆锥上面细,下面粗。

b圆锥有一个尖尖的部分,摸起来很扎手。我们把它叫做顶点。

c圆锥有一个弯曲光滑的面,我们可以把它叫做侧面。这个面是曲面。

d圆锥有一个圆形的面,我们可以把他叫做底面。

e我们还发现圆锥的底面朝下立者,尖朝下不立者。

归纳:圆锥的底面是个圆,侧面是个曲面,有一个顶点。

师:这个圆锥高多少?

学生就会想高在哪里?

师再说明什么是圆锥的高:

圆锥的高是从圆锥的顶点到底面圆心的距离。

师:圆锥的高有几条呢?(1条)。

画图表示。

学生自由测量,汇报。

师再课件演示测量圆锥高的方法、过程。

本节课是在学生认识了圆和圆柱的相关知识的基。

础上进行教学的,教学立足于促进学生的发展,紧密联系生活实际,在对教材进行了充分地分析后,教学设计我注重了以下几点:

1、注重联系生活实际,提高运用所学知识解决实际问题的意识与能力。

课前安排学生收集、整理生活中应用圆锥的实例和信息资料。教学时首先列举生活中大量的圆锥实物,在学生观察思考这些物体形状的共同特点,并从实物中抽象出几何形体的基础上引入。再引导学生对照模型和图形,互说圆锥的特征,加深对圆锥的认识。课后让学生创作一个圆锥的物品,进一步感受几何知识在生活中的应用,同时提高学生运用数学为生活服务的意识和能力。

2、给学生提供充足的与学习的时间和空间。

本节始终以学生的发展为本开展课堂有效教学,体现了学生为学习的主体,我们知道学生的数学能力的提高,在很大程度上,取决于主体意识的形式和主体参与能力的培养。要实现以学生的发展为本,应该注意让学生学习自行获得数学知识的方法,学习主动参与数学实践的能力,获得终生受用的数学创造才能。在本课中,无论问题的引入,圆锥概念的定义,高的寻找及测量方法的探索,老师都给予学生充足的时间进行尝试、研究和讨论中进行,让学生以不同的方式进行合作、交流,这样的过程,不仅提供了学生自主学习的机会,也提高了学生自主参与学习的意识和信心,大家积极发言,争先操作,参与率很高。

3、加强学生在操作中对空间与图形问题的思考。

从建构主义理论的基本理念来看:“知识不是被动接受的,而是由认知主体主动建构的”。教师的任务是引导和帮助学生进行再创造的工作,而不是把现有的知识灌输给学生。学生的能力可能比不上数学家,但通过类似的数学活动,也可以很好的获得数学或理解数学。在本课例中,老师积极地创造机会让学生自己去学习或者去探究问题。通过“看一看”,“摸一摸”,“想一想”,“玩一玩”,“猜一猜”等问题情境,让学生亲身感受数学,在“找”中学,在“测”中学,在“思”中学,培养学生动手操作能力、直观思维和抽象思维能力,使数学课堂教学“动”起来、“活”起来,让学生在“做”中学,使数学课堂焕发出生命活力。

4、合理运用传统教具、学具和现代多媒体辅助教学。

本课中,将传统教具、学具和现代多媒体网络技术有机的结合起来,直观、形象地展示大量圆锥形图片帮助学生建立圆锥的表象,以及动态演示圆锥侧面的展开过程、圆锥高的测量方法等,有效地突破教学中的难点,提高课堂教学效率。

圆锥的体积教学设计及反思【第三篇】

《圆锥的体积》是西师版义务教育课程标准实验教科书数学六年级下册的内容。本节课是在学习了圆柱的体积和认识了圆锥的特征的基础上进行,其教学内容是推导出圆锥体积公式,并能灵活运用公式解决生活中的实际问题。为了加强数学知识与学生生活的联系,教材用实心圆锥和实心圆柱分别没入同一个水槽中,观察水槽中的水位分别上升了多少的实验,激发学生探究圆锥体积的兴趣。

六年级学生经过几年的数学知识学习已经初步掌握了建立空间概念的方法,有了一定的空间想象能力。学习《圆锥体积》之前,学生已经学会推导圆柱体积公式,认识了圆锥的特征。因为二者形状的相似性很容易让学生联想到这两种几何图形之间的联系,从而借助转化思想的经验,使学生在参与探究的过程中经历知识的建构过程。但是我校是处于城镇边缘的农村学校,学生的基础较差,接受能力有限,对于本节的学习有一定的难度。

1、理解圆锥的体积的推导和计算方法,并能灵活运用圆锥体积计算公式解决实际有关圆锥体积的实际应用问题。

2、运用实验法在合作探究中体会等底等高圆柱体积与圆锥体积内在联系,从而完成圆锥体积公式的推导。

3、体会数学与生活的密切联系,感受探究成功的快乐。

重点:圆锥体积计算公式的推导,并能运用公式解决实际问题。

难点:在合作探究中体会等底等高圆柱体积与圆锥体积内在联系。

1、我们已经认识了一些几何体,哪些几何形体的体积我们已经学过了?

2、圆锥有什么特点?(同时出示幻灯)。

3、在这个圆锥体中,几号线段是圆锥体的高。

4、引入:看来,同学们对于圆锥体的特征掌握得很好。你们想不想继续研究圆锥呢?1、长方体、正方体、圆柱。

2、一个顶点;一个侧面,展开是一个扇形;一个底面,是圆形;一条高,从顶点到底面圆心的垂直距离。

3、学生手势出示。

4、想复习内容紧扣重点,由实物到图形,采用对比的方法,不断加深学生对形体的认识。

出示等底等高的实心圆锥、实心圆柱和装有适量水的水槽(标有刻度)。

引入新课(板书课题)激发学生兴趣,学生认真观察,跃跃欲试,都想争取参加实验。联系生活实际创设情境,引发学生的好奇心,激发学习兴趣。情境创设可以让学生感受到数学与生活实际密不可分,从而感受用数学能够解决实际问题的思想,激发学生学习数学的兴趣。

1、猜想体积大小。

实心圆锥和实心圆柱的体积有怎样的关系圆锥体积小于圆柱体积。

圆锥体积可能是圆柱体积的二分之一、三分之一。猜想关系,这个环节,共进行两次猜想,第一次是猜想体积大小。第二次是让学生凭借直觉大胆提出猜想,猜想圆锥的体积与圆柱体积的可能关系,同时在猜想中明确探索方向。学生可能猜想二分之一、三分之一等。在形成猜想后,再引导学生“实验验证”自己的猜想。

2、理解等底等高。

我们研准备一个圆柱体和一个圆锥体。你们比比看,这两个形体有什么相同的地方?

3、猜想关系、实验验证。

同学们有说二分之一的,有说三分之一的,争是争不出结果的,得用实验来验证。

谁来汇报一下,你们组是怎样做实验的?

你们做实验的圆柱体和圆锥体在体积大小上有什么倍数关系?分组做实验。

学生汇报。

用等底等高的圆锥和圆柱,通过实验,让学生研究出等底等高的圆柱与圆锥之间的关系。再利用课件演示,帮助学生回顾自己的实验过程,加深学生对实验过程的体验。

4、总结公式。

我们学过用字母表示数,谁来把这个公式整理一下?(指名发言)。

v锥=v柱×1/3=sh×1/3。

“sh”表示什么?乘1/3呢?学生尝试总结圆锥的体积计算公式。通过实验总结结论,培养学生的归纳概括能力和语言表达能力。

5、全面验证。

是不是任何一个圆锥体的体积都是任何一个圆柱体体积的1/3呢?

(课件演示)等底不等高、等高不等底。

为什么你们做实验的圆锥体积等于圆柱体积的1/3呢?

现在我们得到的这个结论就更完整了。(指名反复叙述公式。)。

今后我们求圆锥体体积就用这种方法来计算。(因为是等底等高的圆柱体和圆锥体。)。

在教学中,注意调动学生的学习积极性,采用分组观察,操作,讨论等方法,突出了学生的主体作用。注重强调了等底等高圆锥和圆柱的体积才有这样的倍数关系,突出了重点。

(2)一个圆锥的底面直径是20厘米,高是6厘米,它的体积是多少?(只列式不计算)。

(3)一个圆柱与一个圆锥体积相等,底面积也相等。圆柱高15厘米,圆锥高多少厘米?

(4)一个圆柱与一个圆锥体积相等,高也相等。圆锥的底面积是圆柱底面积的几倍?

圆锥的体积教学设计及反思【第四篇】

1、通过实验发现等底等高的圆柱和圆锥体积之间的关系,从而得出体积的`计算公式,能运用公式解答有关实际问题。

2、通过动手操作参与实验,发现等底等高的圆柱和圆锥体积之间的关系,并通过猜想、探索和发现的过程,推导出圆锥的体积公式。

3、通过实验,引导学生探索知识的内在联系,渗透转化思想,感受数学方法的内在魅力,激发学生参加探索的兴趣。

教学重点:通过实验的方法,得到计算圆锥的体积。

教学难点:运用圆锥的体积公式进行正确地计算。

教学准备:等底等高的圆柱和圆锥容器模型各一个。

一、复习导入。

师:同学们,请看大屏幕(课件出示圆柱削成最大圆锥)。

1、圆柱体积的计算公式是什么?(指名学生回答)。

2、圆锥有什么特征?

同学们,圆柱的体积我们已经知道怎么求,那与它等底等高的圆锥的体积同学们知道怎么求吗?让我们一同走进圆锥的体积与等底等高的圆柱体体积有什么关系的知识课堂吧!(板书:圆锥的体积)。

二、探究新知。

课件出示等底等高的圆柱和圆锥。

1、引导学生观察:这个圆柱和圆锥有什么相同的地方?

学生回答:它们是等底等高的。

猜想:

(1)、你认为圆锥体积的大小与它的什么有关?

(2)、你认为圆锥的体积和什么图形的体积关系最密切?猜一猜它们的体积有什么关系?

2、学生动手操作实验。

(1)、用圆锥装满水(要装满但不能溢出来)往圆柱倒,倒几次才把圆柱倒满?

(2)、通过实验,你发现了什么?

小结:通过实验我们发现圆柱的体积是与它等底等高圆锥体积的3倍。也可以说成圆锥的体积是与它等底等高圆柱体积的三分之一。

问:把圆柱装满一共倒了几次?

生:3次。

师:这说明了什么?

生:这说明圆锥的体积是和它等底等高的圆柱体积的三分之一。(板书:圆锥的体积=1/3×圆柱体积)。

师:圆柱的体积等于什么?

生:等于“底面积×高”。

师:那么,圆锥的体积可以怎样表示呢?(板书:圆锥的体积=1/3×底面积×高)。

师:用字母应该怎样表示?(v=1/3sh)。

师:在这个公式里你觉得哪里最应该注意?

三、教学试一试。

四、巩固练习。

2、判一判。

3、算一算。

4、拓展延伸。

五、总结。

通过这节课的学习,你有什么收获呢?

六、板书:

圆锥的体积=圆柱的体积×1/3。

圆锥的体积=底面积×高×1/3。

用字母表示v=1/3sh。

圆锥的体积教学设计及反思【第五篇】

教学过程:

一、情境引入:

(1)(老师出示铅锤):你有办法知道这个铅锤的体积吗?

(2)学生发言:(把它放进盛水的量杯里,看水面升高多少……)。

(3)教师评价:这种方法可行,你利用上升的这部分水的体积就是铅锤的体积,间接地求出了铅锤的体积。真是一个爱动脑筋的孩子。

(4)提出疑问:是不是每一个圆锥体都可以这样测量呢?(学生思考后发言)。

(5)引入:如果每个圆锥都这样测,太麻烦了!类似圆锥的麦堆也能这样测吗?(学生发表看法),那我们今天就来共同探究解决这类问题的普遍方法。(老师板书课题)。

设计意图:情景的创设,激发了学生学习的兴趣,使学生产生了自己想探索的需求,情绪高涨地积极投入到学习活动中去。

二、新课探究。

(一)、探究圆锥体积的计算公式。

1、大胆猜测:

(1)圆锥的体积该怎样求呢?能不能通过我们已学过的图形来求呢?(指出:我们可以通过实验的方法,得到计算圆锥体积的公式)。

(2)圆锥和我们认识的哪种立体图形有共同点?(学生答:圆柱)为什么?(圆柱的底面是圆,圆锥的底面也是圆……)。

(3)请你猜猜圆锥的体积和圆柱的体积有没有关系呢?有什么关系?(学生大胆猜测后,课件出示一个圆锥与3个底、高都不同的圆柱,其中一个圆柱与圆锥等底等高),请同学们猜一猜,哪一个圆锥的体积与这个圆柱的体积关系最密切?(学生答:等底等高的)。

(4)老师拿教具演示等底等高。拿出等底等高的圆柱和圆锥各一个,通过演示,使学生发现“这个圆锥和圆柱是等底等高的'。”

(5)学生用上面的方法验证自己做的圆锥与圆柱是否等底等高。(把等底等高的放在桌上备用。)。

2、试验探究圆锥和圆柱体积之间的关系。

我们通过试验来研究等底等高的圆锥体积和圆柱体积的关系。

(1)课件出示试验记录单:

a、提问:我们做几次实验?选择一个圆柱和圆锥我们比较什么?

b、通过实验,你发现了什么?

(2)学生分组用等底等高的圆柱圆锥试验,做好记录。教师在组间巡回指导。

(3)汇报交流:

你们的试验结果都一样吗?这个试验说明了什么?

(4)老师用等底等高的圆柱圆锥装红色水演示。

(教师让学生注意记录几次,使学生清楚地看到倒3次正好把圆柱装满。)。

(5)学生拿小组内不等底等高的圆锥,换圆锥做这个试验几次,看看有没有这样的关系?(学生汇报,有的说我用自己的圆锥装了5次,才把圆柱装满;有的说,我装了2次半……)。

(6)试验小结:上面的试验说明了什么?(学生小组内讨论后交流)。

(这说明圆柱的体积是与它等底等高圆锥体积的3倍.也可以说成圆锥的体积是和它等底等高的圆柱的体积的三分之一。)。

3、公式推导。

(1)你能把上面的试验结果用式子表示吗?(学生尝试)。

(2)老师结合学生的回答板书:

(3)在探究圆锥体积公式的过程中,你认为哪个条件最重要?(等底等高)。

进一步强调等底等高的圆锥和圆柱才存在这种关系。

设计意图:放手让学生自主探究,在实践中真正去体验圆柱和圆锥之间的关系。

1、已知圆锥的底面积和高,求圆锥的体积。

(1)出示例2:现在你能求出老师手中的铅锤的体积吗?(已知铅锤底面积24平方厘米,高8厘米)学生尝试解决。

(2)提问:已知圆锥的底面积和高应该怎样计算?

(3)引导学生对照圆锥体积的计算公式代入数据,然后让学生自己进行计算。

2、已知圆锥的底面半径和高,求圆锥的体积。

(1)出示例题:

底面半径是3平方厘米,高12厘米的圆锥的体积。

(2)学生尝试解答。

(3)提问:已知圆锥的底面半径和高,可以直接利用公式。

3、已知圆锥的底面直径和高,求圆锥的体积。

(1)出示例3:

工地上有一些沙子,堆起来近似于一个圆锥,这堆沙子大约多少立方米?(得数保留两位小数)。

(2)要求沙堆的体积需要已知哪些条件?(由于这堆沙堆近似圆锥形,所以可利用圆锥的体积公式来求,需先已知沙堆的底面积和高)。

(3)题目的条件中不知道圆锥的底面积,应该怎么办?(先算出沙堆的底面半径,再利用圆的面积公式算出麦堆的底面积,然后根据圆锥的体积公式求出沙堆的体积)。

(4)分析完后,指定两名学生板演,其余学生将计算步骤写在教科书第26页上.做完后集体订正。(注意学生最后得数的取舍方法是否正确)。

(5)提问。

4、已知圆锥的底面直径和高,可以直接利用公式。

v=1/3兀(d/2)2h来求圆锥的体积。

设计意图:公式的延伸让学生对所学知识做到灵活应用,培养了学生活学活用的本领。

22 3055169
");