体积单位的换算教学设计3篇

网友 分享 时间:

通过实例讲解体积单位换算,结合实际应用,帮助学生掌握升、毫升、立方米等单位之间的转换关系,增强理解与应用能力。下面是勤劳的小编为大家分享的体积单位的换算教学设计3篇范例,欢迎借鉴参考。

体积单位的换算教学设计1

教学目标:

结合实践活动,认识体积、容积单位之间的进率,会进行体积、容积单位之间的换算。

能力目标:

在观察、操作中,发展空间观念。

情感目标:

学生想探究问题,愿意和同伴进行合作交流;乐于用学过的知识解决生活中的相关的实际问题。

教学重点、难点:

观察、操作中会进行体积、容积单位之间的换算。

教学策略

教师引导学生进行自主探究。

教学准备:

图表课件

教学过程:

一、导入新课:同学们上节课我们学习了长方体的体积,哪个同学起来说一下体积单位有哪些?引出体积单位。

二、教学新知:

1、让学生利用手中的教具摆出正方体。

1排摆10个,每层正好摆10排,也就是说,每层可以摆100个。高是1分米=10厘米,盒子里正好摆10层。即1分米3 = 1000厘米3, 1升 = 1000毫升。

2、用以上方式教学立方米与立方分米之间的进率,即体积为1米3的正方体,它的棱长为1米;也可看成是棱长为10分米的正方体,它的体积是10×10×10=1000分米3,1米3 =1000分米3,1 m3 = 1000 dm3。

3、填一填表格,比一比了解长度、面积、体积单位之间的联系和区别。

单位

相邻两个单位之间的进率

长度

米、()、厘米

10

面积

米2、()、厘米2

体积

米3、()厘米3

4、课堂练习

(1)先让学生独立填一填,再选几道让学生说说思考的方法与过程。

(2)可以让学生通过计算来分析、比较从而解决问题。

通过计算第三种包装比较合算。如果学生有其他的比较方式,只要合理,教师应给予肯定和鼓励。

(3)先让学生联系生活经验,对电视机包装箱上“60×50×40”这个数据信息进行解释,然后再让学生说说自己的想法并计算。体积是60×50×40=120000(立方厘米)

(4)先让学生独立计算,再说说是怎么想的,实际上就是求米高的水的'体积。50×20×=1500(立方米)

四、课堂小结:

学习了这节课,同学们有什么感受和体会?

板书设计:

1分米3 = 1000厘米3

1升 = 1000毫升

1米3 = 1000 分米3

1m3 = 1000 dm3

体积单位的换算教学设计2

教学目标:

1.知识与技能:使学生能运用长方体和正方体的知识解决求表面积和体积的实际问题。

2.过程与方法:激发学生学数学、用数学的兴趣,提高综合解决问题的能力。

3.情感、态度与价值观:培养同伴之间进行合作交流,乐于用学过的知识解决生活中的相关的实际问题。

教学重点:

观察、操作中进一步巩固体积、容积单位之间的换算。

教学难点:

培养学生根据具体情况,利用所学知识解决实际问题的综合能力。

教学准备:

每组准备6个同样大小的长方体或正方体小盒,投影。

教学过程:

一、导入新课

同学们上节课我们学习了体积单位之间的换算,这一节我们对第四单元的内容进行练习。

二、复习

1.师:什么是物体的表面积?

抽生回答。

2.师 :在实际生活中,有时不一定要求出长方体和正方体6个面的面积和。要结合具体情况分析,才能正确解决问题。

(1)做一个长方体(正方体)的油桶,需要多少材料,是求这个长方体(正方体)的几个面的面积和?

(2)求做长方体排气管道,需要多少材料,是求长方体的几个面的面积和?

3.师:什么是物体的体积?什么是物体的容积?体积和容积有什么区别和联系?

(1)求长方体菜窖挖出多少土,是求这个长方体的什么?

(2)挖出的这些土能垫多长、多宽、多高的领操台,是求这个领操台的什么?

4.如果求火车的一节车厢能装多少吨煤,必须知道什么条件?

5.动手实践

(1)以小组为单位,拿出准备好的6个同样的小盒子,设计一个包装盒。

设计的包装盒要美观、大方、实用。

尽可能地节省材料。

列式计算出你设计的包装盒用多少纸板。

列式计算出你设计的包装盒的容积是多少。

(2)汇报交流。

三、巩固练习

1.练习四第1题:求图形的体积可以让学生独立计算。交流时教师要关注学生出现的一些问题。

2.练习四第3题:让学生应用体积单位的进率、单位换算等知识来判断。

3.练习四第4题,填上适当的体积单位。

让学生根据自己的判断填上适当的单位,进一步感受体积单位的实际意义,发展学生的空间观念。交流时,教师可以让学生比画一下。

4.练习四第5题:通过计算可以让学生说说计算方法,体会虽然结果相同,但表面积和体积是两个不同的概念,并可以结合实物指一指、说一说。

5.练习四第7题:使学生理解两个图形所占的空间就是这两个图形的体积。

6.练习四第8题:注意要把4厘米化为米。

答案:45×28×=(立方米)

÷ = (车)

考虑实际情况,需要34车。

四、课堂小结

学习了这节课,同学们有什么感受和体会?有什么提高?

作业设计:

练习四第2、6、9、10题、实践活动。

板书设计:

练 习 四

长方体的表面积=(长×宽+长×高+宽×高)×2

长方体的体积=长×宽×高

正方体的表面积=棱长×棱长×6

正方体的体积=棱长×棱长×棱长

第8题 45×28×=(立方米)

÷ = (车)

考虑实际情况,需要34车。

(根据学生练习情况调整板书内容)

体积单位的换算教学设计3

教学目标

1、结合实践活动,认识体积、容积单位之间的进率,会进行体积、容积单位之间的换算。

2、在观察,操作过程中,发展空间观念。

教学重点

会进行体积、容积单位之间的换算。

教学难点

体积、容积单位之间的换算。

教具准备

小正方体、量杯、1分米3盒子。

教师指导与教学过程

学生学习活动过程

设计意图

一、导入:

1、出示1dm3的盒子,

提问:这个盒子可以放多少个体积为1cm3的正方体?

2、摆一摆

引导学生摆设小正方体。

学生通过摆设,得出:

1分米3=1000厘米3

1升=1000毫升

二、试一试

1、引导学生完成试一试第1题

提问:你是怎样得出来的?

学生进行猜测,并说一说自己的猜测理由。

1排摆10个

每层可以摆多少排?算一算,每层可以摆多少个?(10×10×=100个)

1分米=(10)厘米

盒子里可以摆几层?

算一算,1dm3的盒子里可装多少个1cm3的小正方体?

10×10×10=1000

根据1米=10分米

引导学生通过实际操作,结合实际操作模型,认识和理解厘米3和分米3之间的进率。

结合厘米3、分米3与升、毫升之间的关系,推导公式:

1升=1000毫升

教师指导与教学过程

学生学习活动过程

设计意图

让学生通过填一填,比一比:

了解长度、面积、体积单位之间的联系与区别。

三、练一练

1、学生练习

2、反馈

计算1m3=Udm3

学生计算:

10×10×10=1000分米3

得出:1米3=1000分米3

学生分析长度、面积、体积之间的关系。

1、学生先填一填。

2、让学生说说思考的方法和过程。

让学生通过分析,比较从而解决问题,了解长度、面积、体积单位之间的联系与区别。

22 3443509
");