小学六年级数学《圆面积》二教学设计精彩4篇

网友 分享 时间:

【导言】此例“小学六年级数学《圆面积》二教学设计精彩4篇”的教学资料由阿拉题库网友为您分享整理,以供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载支持吧!

圆的面积教案【第一篇】

教材分析

本节课的内容是在学生初步认识了圆,学习了圆的周长以及学过几种常见直线几何面积的基础上进行学习的。学生从学习平面图形的面积到学习曲线图形的面积,这是一次质的飞跃。学生学习掌握了圆的面积的'计算方法,不仅能解决简单的实际问题,也为后面学习圆柱、圆锥的知识打下基础。

学情分析

学生已经有了一些平面图形面积计算的经验,知道运用转化的思想可以研究新的图形的面积。在教学中要鼓励学生大胆想象、勇于实践,充分利用直观教学具,结合多媒体课件,在观察、操作中将圆转化成已经学过的平面图形,从中发现圆的面积与半径、直径有关,从而推导出圆的面积计算公式。由于刚刚学习了圆的周长,学生容易把圆的面积和圆的周长混淆,所以教学中要让学生注意区分周长和面积,正确进行计算,解决实际问题。

教学目标

知识与技能:

1.理解圆的面积的概念。

2.理解圆的面积公式的推导过程,掌握圆的面积的计算方法,能正确解决实际问题。

过程与方法:

经历圆的面积的推导过程,通过动手操作,培养学生运用转化思想解决问题的能力。

情感态度价值观:

感悟数学知识的内在联系,体验发现新知识的快乐,增强学生的合作交流意识和能力,培养学生学习数学的兴趣。

教学重点和难点

教学重点:

掌握圆的面积的计算公式,能够正确地计算圆的面积,解决生活中的实际问题。

教学难点:

理解圆的面积公式的推导过程。

教学准备:

圆片、课件。

圆面积教学反思【第二篇】

教学《圆的面积》时,我力求使学生在获得知识的同时,创新意识、探究能力和实践能力都得到发展,设计了以下几个环节:

一、让学生亲身经历知识的形成过程,渗透转换的数学思想

首先引导学生回忆所学过图形面积公式推导的过程,如:回忆上学期探究平行四边形、三角形、梯形面积的探究方法,引导学生发现“转化”是探究新的数学知识、解决数学问题的好方法,为下面探究圆的面积计算的方法奠定基础。这部分学生在口述过程中对推导的过程说得不是十分到位,许多同学都忘记了,里面具体环节没有说出来。但通过我用课件演示,给学生视觉的刺激,调动了学生原有的知识储备,为新知的“再创造”做好知识的准备。

二、演示操作,加深理解

在教学中,我让学生通过重叠大小不同的两个圆使他们感受到圆的面积与半径有关系,再放手让学生应用转化的方法进行操作,把一个圆通过分、剪、拼等过程,转化成一个近似的平行四边形,从中发现圆和拼成平行四边形的联系,并根据长方形的面积公式推导出圆的面积的计算公式,在这过程中,不但使学生有效地理解和掌握圆的面积计算公式,而且也使他们获得了转化的数学思想方法,并培养了学生探索问题的能力。

三、练习设计体现了针对性,层次性和实践性

本节课的课堂练习即有对圆的面积计算公式的巩固性练习,也有运用圆的面积解决简单的实际问题的练习,还有综合运用长方形、圆的有关知识解决简单的实际问题的练习。通过这些练习,有助于学生巩固圆的面积的有关知识,形成运用技能,培养学生的数学能力。

在教学过程中,由于教学量的加大,对于圆的面积公式还应让学生多点时间去思考,去推导。细节的设计还要精心安排。特别是学生在口述推导的过程中,导出的太快,公式推导不明显,怎样出来的结果演示太快,学生不易消化。这个问题在以后的教学过程中要注意细化。总之,这节课上得自我感觉还是比较成功,从始至终思路清晰,教学媒体运用较好,环环相扣,使学生学得活,学得扎实,达到预期的教学效果。

《圆面积计算》教学设计 (北师大版六年级上册【第三篇】

红旗小学    龚宇

教学内容:西师版六年级数学上册20页例2、例3。

教学目标:

1、知识与能力:使学生正确认识圆的面积的含义;理解掌握圆面积的计算公式,并能正确地计算圆的面积。

2、过程与方法:激发学生参与整个课堂教学活动的兴趣,让学生在“提出问题--分析问题--解决问题--应用问题”的研究性学习的模式中推导出圆面积公式。

3、情感、价值观:渗透转化的数学思想和极限思想,同时对学生进行辩证唯物主义思想的初步教育。

教学重点:圆面积计算公式的推导。

教学难点:极限思想的渗透及圆面积公式的推导。

教具学具:剪刀4把,圆纸片,大小不一的两个圆。

教学过程:

一、认识圆面积的内涵--提出问题

你认识圆吗?你已经知道了圆的那些知识?回顾以前学的平面图形,你还想知道圆的什么知识?

圆的面积怎样求呢?请你拿出准备的圆纸片,摸一摸,体验一下圆面。你能比划圆的面积吗?你能说出圆的面积指的是什么吗?

学生说后,老师小结指出:圆的面积,就是圆所围成的平面图形的大小。今天这一课,我们就来研究怎样求圆的面积。揭示课题:圆的面积

二、讨论操作--分析问题

1、积极动脑,讨论推法

师:下面,就请大家来想办法找出求圆的面积的科学方法--面积公式。

如学生想不出方法,就生回忆长方形、平行四边形、三角形的面积公式推导过程。如有学生想出就让学生举手谈设想。①、摆--长方形面积推导就是通过摆面积单位,然后推导出长方形的面积公式。②、剪、拼--平行四边形面积的推导就是先沿高剪开,然后再拼成已学过的长方形来推导出平行四边形的面积公式的。③、旋转、移拼--三角形、梯形面积的推导就是通过旋转,然后再移拼成已学的平行四边形来推导出面积公式的。

师指出:学习总是化未知为已知;求一个新的图形的面积时也是把新图形转化成已知图形来求面积。(板书:转化。)

2、分组操作,反思求悟

把学生分组,根据三种想法去操作,看能不能找出圆面积的求法。如果有困难,困难在那里?为什么求不出圆的面积?

学生汇报研究情况。(圆是曲线围成的,不可以直接用面积单位来摆;旋转也不行转来转去还是圆。)由此让生悟出:摆不行;旋转也不行;只有剪拼有点希望。

3、抓住契机,相机引导

师:摆不行,旋转也不行,只有通过剪,拼转化成已学的图形可以试一试了。

师:那么,能不能随意剪、随意拼呢?请大家比一比:

师出示大小不一的两个圆,哪个面积大?为什么?也就是说圆的面积与什么有关?引导得出:圆的面积与半径有关。

师:既然圆面积与半径有关,那么剪的时候就可以沿什么去剪呢?(半径)对,就应沿半径的方向去把圆剪开;并且,剪开后再拼成一个以半径为边的图形?

请大家再来试试剪和拼。

4、学生尝试,研究转化过程

学生在小组内进行,师巡视指导,若学生有困难,师可引导:首先,在剪的时候,不能随意剪,要沿半径剪,并且要等分。我们先从最少的情况来研究:把圆两等分再拼。(生操作)怎样?能不能拼成已经学过的图形?(不能。)那就在此基础上继续等分再拼--试试四等分。让学生认识到如果这样无限等分下去,再对插,最终将会把圆转化成平行四边形(三角形、梯形等)。

三、以转化成平行四边形为例,研究推导出圆面积公式--解决问题

1、设疑:很好,刚才的研究,同学们表现得很不错。根据尝试操作,我们把圆转化成了平行四边形,现在大家能够找到圆面积的计算方法吗?

2、学生小组或同桌合作探究,推导公式。

(1)、讨论探究,出示提示语:

平行四边形的长相当于圆的(        ),宽相当于圆的(       )?

让学生讨论之后动笔试一试,看能否推导出圆的面积公式。

(2)、指名学生上台演示公式推导过程

3、揭示公式,验证猜想。让学生齐读公式。

4、用字母表示公式。

提问:要求圆的面积只要知道什么就行?(半径)

四、在实践中巩固--应用问题

1、教学例3:修建一个半径是30米的圆形鱼池,它的占地面积是多少平方米?

学生自做,指名学生板演,老师巡视,了解学生完成作业情况,后集体订正。

2、完成教材21页“课堂活动”第1题。

学生自做,后同桌交流,交流时介绍一下思路及结果。

五、课堂总结,渗透学法--研究性学习

今天这一堂课,通过同学们自己的猜测、讨论、操作、思考,把圆转化成已经学的平行四边形来研究探讨得出了圆的面积公式,很不简单,希望同学们今后继续发扬这种对学习的研究精神,在研究中去学习数学。

六、巩固、拓展知识。

1、从自己身边找一个圆形物体,请你想办法求出它的面积。

2、把圆分成若干等份后,拼成近似的梯形或三角形,推算出圆面积计算公式。

七、板书略。

《圆面积公式推导》优秀的教学设计【第四篇】

教学内容

课本第143页例2;练一练第1~6题。

教材分析

这部分内容是学生在学会了求圆的周长与直径、半径的关系以及已知圆的半径求圆面积的基础上,来学习已知圆的。周长。求圆面积的应用题。

学情分析

本班学生计算能力还可以,就是对应用题有一种害怕心理。

教学目标

1、进一步掌握圆面积公式,并能正确地计算圆面积。

2、能运用圆面积计算公式,正确地解决一些简单的实际问题。

教学重点

会熟练运用公式求圆面积。

教学难点

求出需要的条件,即圆的半径。

教学准备

作业纸、课件。

教学过程

一、复习。

课件出示:

(一)求下列各题中圆的半径。

(1)C=分米,r=?;(2)d=30厘米,r=?

(3)C=分米,r=?;(4)d=厘米,r=?

(二)、求下列各圆的面积。

(1)r=2分米,S=?(2)d=6米,S=?

(3)r=10厘米,S=?(4)d=3分米,S=?

只要求学生进行口头表述计算公式(不求计算结果)

二、学生活动:

要求两人一小组,到室外找一个圆形物体的平面,计算出它的面积。

运用学生事先准备的工具(细绳、直尺等)

三、汇报交流

小组把作业纸上交,交流心得

姓名

准备工具

物体名称周长

半径

面积

四、巩固练习

练一练第1~6题。

《作业本》p73。

板书设计:

圆面积公式的应用

R=d÷2

R=c÷π÷2

S=πr

221381