实数教学设计【4篇】
【序言】由三一刀客最美丽的网友为您整理分享的“实数教学设计【4篇】”作文资料,以供您学习参考之用,希望这篇文档资料对您有所帮助,喜欢就复制下载吧!
实数教案设计【第一篇】
教学目标
1、知道有效数字的概念;
2、会按要求进行近似数的运算
教学过程
一、创设情境,导入新课
1、什么叫实数?实数怎么分类?
2、在有理数范围内学过的概念、运算法则、运算定律、性质,在实数范围内还适应吗?
3、做一做
如果正方形ABCD的面积为3平方厘米,正方形EFGH的面积为5平方厘米,这两个正方形的边长的和大约是多少厘米(精确到小数点后面第一位)?
二、合作交流,探究新知
1 交流上面问题的做法
(1)估计同学们会有两种做法:
用计算器分别求的近似值,用四舍五入取到小数点后面第一位,然后相加,得:(厘米)
(2)用计算器直接求出的近似值,用四舍五入取到小数点后面第一位,得:
如果没有两种做法,也要想办法引出这两种做法
两种做法的答案不同,哪一种答案正确呢?
请同学们把第一种做法修改一下:将的近似值分别取到小数点后第二位,然后相加。你发现了什么?
这时两种做法的答案就一样了。
从这个例子看出,在进行实数的加减运算时,如果要求答案取到小数点后面第一位,那么参与运算的每一个实数的近似值应当多一位,即取到第二位,最后结果才取到小数点后面第一位。
2、引入有效数字的概念
在上面运算中是的近似值,它是用四舍五入得到的,1、7、3叫近似数的三个有效数字。什么叫近似数的有效数字呢?
先思考:精确到小数点后面第三位,等于多少呢?
近似数有三个有效数字1、0、3
现在你能说说,什么叫近似数的有效数字吗?
从第一个不是零点数字起到最后一个不数字止的所有数字叫近似数的有效数字。
考考你:
1 近似数有几个有效数字,分别是______________________。
2 125万保留两个有效数字等于__________
3 有_______个有效数字。
3、怎样进行近似值的运算?
在近似数的加减法运算中,如果被减数与减数相差较大,那么参与运算的最大数多取一位有效数字,其余的数取到与最大数最低位相对应的那一位止。
例1 计算: ++-(保留三个有效数字)提醒:最后一位数字为0,不能省略。
(2)在进行近似数的乘法和除法运算中,参与运算的每一个数应多取一位有效数字。
例2 在上面做一做问题中 ,如果分别以正方形ABCD、EFGH的边长作为宽与长,做一个长方形,那么这个长方形的面积大约是多少平方厘米(保留三个有效数字)
考考你:
1、计算(精确到小数点后面第二位)(1)(2)
2、计算(保留三个有效数字)(1) (2)
三、应用迁移,巩固提高
例3(1)一个正方形的体积变为原来的27倍,它的棱长变为多少倍?表面积变为原来的多少倍?
变式:上面问题中27倍改为:8倍,其他不变。
例4 已知求a+b的值。
例5 设a、b为实数,且求的值。
四、反思小结,拓展提高
这节课,你认为最重要的是什么?
1、有效数字的概念;
2、实数的近似数的计算;
实数教案设计【第二篇】
教学目标
●知识与技能目标
(1)了解有理数的运算法则在实数范围内仍然适用。
(2)用类比的方法,引入实数的运算法则、运算律,并能用这些法则、运算律在实数范围进行正确计算。
(3)正确运用公式:
( ≥0, ≥0) ( ≥0, >0)
这两个公式,实际上是二次根式内容中的两个公式,但这里不必向学生提出二次根式这个概念。
●过程与方法目标
(1)通过具体数值的运算,发现规律,归纳总结出规律。
(2)能用类比的方法解决问题,用已有知识去探索新知识。
●情感与态度目标
由实例得出两条运算法则,培养学生归纳、合作、交流的意识,提高数学素养。
教学重点
(1)用类比的方法,引入实数的运算法则、运算律,能在实数范围内正确运算。
(2)发现规律:
( ≥0, ≥0) ( ≥0, >0)
教学难点
(1)类比的学 习方法。
(2)发现规律的过程。
教学准备:
教材、、电脑。电脑软件:Word,Powerpoint。
教学过程
第一环节:复习引入(2分钟,学生通过回答问题,回顾旧知)
问题1 :有理数中学过哪些运算及运算律?
答:加、减、乘、除、乘方,加法()交换律、结合律 ,分配律。
问题2:实数包含哪些数?
答:有理数,无理 数。
问题3:有理数中的运算法则、运算律等在实数 范围内能继续使用?
答:这是我们本节课要解决的新问题。
《实数》教学反思【第三篇】
上完《实数》这节课后,我常常有这样的困惑:不仅是讲了,而且是讲了多遍,可是学生的解题能力就是得不到提高!比如明明重复了好多遍“a2的平方根是±a”,可是学生每次做题仍是按“a2的平方根是a”计算。也常听见学生这样的埋怨:巩固题做了几十遍,数学成绩却不见提高!这不能不引起我的反思了。确实,出现上述情况涉及方方面面,但我认为其中的例题教学值得反思,数学的例题是知识由产生到应用的关键一步,即所谓“抛砖引玉”,然而很多时候只是例题归例题,解后并没有引导学生进行反思,因而学生的学习也就停留在例题表层,出现上述情况也就不奇怪了。
事实上,解后反思是一个知识小结、方法提炼的过程;是一个吸取教训、逐步提高的过程;是一个收获希望的过程。从这个角度上讲,例题教学的解后反思应该成为例题教学的一个重要内容。我认为应从以下几方面做一些探讨:
一、在解题的方法规律处反思。
“例题千万道,解后抛九霄”难以达到提高解题能力、发展思维的目的。善于作解题后的反思、方法的归类、规律的小结和技巧的揣摩,再进一步作一题多变,一题多问,一题多解,挖掘例题的深度和广度,扩大例题的辐射面,无疑对能力的提高和思维的发展是大有裨益的。通过例题的层层变式,培养学生从特殊到一般,从具体到抽象地分析问题、解决问题;通过例题解法多变的教学则有利于帮助学生形成思维定势,而又打破思维定势;有利于培养思维的变通性和灵活性。
二,在学生易错处反思。
学生的知识背景、思维方式、情感体验往往和成人不同,而其表达方式可能又不准确,这就难免有“错”。例题教学若能从此切入,进行解后反思,则往往能找到“病根”,进而对症下药,常能收到事半功倍的效果!
(1)计算常出现哪些方面的错误?
(2)出现这些错误的原因有哪些?
(3) 怎样克服这些错误呢?可让同学们各抒己见,针对各种“病因”开出有效的“方子”。
实践证明,这样的例题教学是成功的,学生在计算的准确率、以及速度两个方面都有极大的提高。
数学实数教案【第四篇】
教学目标
1、了解无理数和实数的概念;会对实数按照一定的标准进行分类,培养分类能力;
2、了解分类的标准与分类结果的相关性,进一步了解体会“集合”的含义;
3、了解实数范围内相反数和绝对值的意。
教学难点
理解实数的概念。
知识重点
正确理解实数的概念。
教学过程
设计理念
试一试
学生以前学过有理数,可以请学生简单地说一说有理数的基本概念、分类.
试一试
1、使用计算器计算,把下列有理数写成小数的形式,你有什么发现?
动手试一试,说说你的发现并与同学交流.
(结论:上面的有理数都可以写成有限小数或无限循环小数的形式)
可以在此基础上启发学生得到结论:任何一个有理数都可以写成有限小数或无限循环小数的形式.
2、追问:任何一个有限小数或无限循环小数都能化成分数吗?
(课件展示)
阅读下列材料:
设x=0.=…①
则10x=…②
则②-①得9x-3,即x=
即0.=…=
根据上面提供的方法,你能把0,0化成分数吗?且想一想是不是任何无限循环小数都可以化成分数?
在此基础上与学生一起得到结论:任何一个有限小数或无限循环小数都能化成分数,所以任何一个有限小数或无限循环小数都是有理数。
学生自己回忆有理数的分类,为引入实数的分类作好铺垫.
让学生动手实践,自己去发现并学会与他人交流.
在学生解决了一个问题后,层层深入地提出了一个对学生
有更大挑战性的问题,激发学生学习探索的兴趣.
引入新知
1、在前面两节的学习中,我们知道,许多数的平方根和立方根都是无限不循环小数,它们不能化成分数.我们给无限不循环小数起个名,叫“无理数”.有理数和无理数统称为实数.
例1(1)你能尝试着找出三个无理数来吗?
(2)下列各数中,哪些是有理数?哪些是无理数?
解决问题后,可以再问同学:“用根号形式表示的数一定是无理数吗?”
2、实数的分类
(1)画一画
学生自己回忆并画出有理数的分类图.
(2)挑战自己
请学生尝试画出实数的分类图.
例2把下列各数填人相应的集合内:
整数集合{…}
负分数集合{…}
正数集合{…}
负数集合{…}
有理数集合{…}
无理数集合{…}
给出无理数定义后,请学生自己找找无理数,让学生在寻找的过程中,体会无理数的基本特征.
应该让学生自己小结得出结论:判断一个数是有理数还是
无理数,应该从它们的定义去辩别,而不能从形式上去分辩.
学生自己尝试画出实数的分类图,体会依据分类标准的不
同会有不同的分法.
探一探
我们知道,在有理数中只有符号不同的两个数叫做互为相反数,例如3和-3,和-等,实数的相反数的意义与有理数一样。
请学生回忆在有理数中绝对值的意义.例如,|-3|=3,|0|=0,||=等等.实数绝对值的意义和有理数的绝对值的意义相同.
试一试完成课本第176页思考题.
引导学生类比地归纳出下列结论:
数a的相反数是-a
一个正实数的绝对值是它本身,一个负实数的绝对值是它的相反数;0的绝对值是0.
随着数从有理数扩充到实数,原来在有理数范围里讨论的相反数、绝对值等,自然地拓展到实数范围内。
练一练
例1求下列各数的相反数和绝对值:
,0,3
例2一个数的绝对值是,求这个数。
例3求下列各式的实数x:
(1)|x|=|-|;
(2)求满足x≤4的整数x
教学中应该给学生充分发表自己想法的时间,自己体会有理数关于相反数和绝对值的意义同样适用于实数。
小结与作业
布置作业
必做:课本第178页习题第1、2、3题;
选做:课本第179页习题第7题
上一篇:高中物理弹力教学设计(精选5篇)
下一篇:小学音乐教学设计【热选4篇】