一次函数与二元一次方程课教学设计汇总4篇
【阅读指引】阿拉文库网友为您分享整理的“一次函数与二元一次方程课教学设计汇总4篇”范文资料,以供您参考学习之用,希望这篇文档对您有所帮助,喜欢就下载分享给大家吧!
元一次方程教学设计【第一篇】
教学目标:
1、会用加减消元法解二元一次方程组。
2、能根据方程组的特点,适当选用代入消元法和加减消元法解二元一次方程组。
3、了解解二元一次方程组的消元方法,经历从“二元”到“一元”的转化过程,体会解二元一次方程组中化“未知”为“已知”的“转化”的思想方法。
教学重点:
加减消元法的理解与掌握
教学难点:
加减消元法的灵活运用
教学方法:
引导探索法,学生讨论交流
教学过程:
一、情境创设
买3瓶苹果汁和2瓶橙汁共需要23元,买5瓶苹果汁和2瓶橙汁共需33元,每瓶苹果汁和每瓶橙汁售价各是多少?
设苹果汁、橙汁单价为x元,y元。
我们可以列出方程3x+2y=23
5x+2y=33
问:如何解这个方程组?
二、探索活动
活动一:
1、上面“情境创设”中的方程,除了用代入消元法解以外,还有其他方法求解吗?
2、这些方法与代入消元法有何异同?
3、这个方程组有何特点?
解法一:3x+2y=23①
5x+2y=33②
由①式得③
把③式代入②式
33
解这个方程得:y=4
把y=4代入③式
则
所以原方程组的解是x=5
y=4
解法二:3x+2y=23①
5x+2y=33②
由①—②式:
3x+2y-(5x+2y)=23-33
3x-5x=-10
解这个方程得:x=5
把x=5代入①式,
3×5+2y=23
解这个方程得y=4
所以原方程组的解是x=5
y=4
把方程组的两个方程(或先作适当变形)相加或相减,消去其中一个未知数,把解二元一次方程组转化为解一元一次方程,这种解方程组的方法叫做加减消元法(eliminationbyadditionorsubtraction),简称加减法。
三、例题教学:
例1.解方程组x+2y=1①
3x-2y=5②
解:①+②得,4x=6
将代入①,得
解这个方程得:
所以原方程组的解是
巩固练习(一):练一练1
。(1)
例2.解方程组5x-2y=4①
2x-3y=-5②
解:①×3,得
15x-6y=12③
②×3,得
4x-6y=-10④
③—④,得:
11x=22
解这个方程得x=2
将x=2代入①,得
5×2-2y=4
解这个方程得:y=3
所以原方程组的解是x=2
y=3
四、思维拓展:
解方程组:
五、小结:
1、掌握加减消元法解二元一次方程组
2、灵活选用代入消元法和加减消元法解二元一次方程组
元一次方程教学设计【第二篇】
一、教学目标
1、通过与一元一次方程的比较,能说出二元一次方程的概念,并会辨别一个方程是不是二元一次方程;
2、通过探索交流,会辨别一个解是不是二元一次方程的解,能写出给定的二元一次方程的解,了解方程解的不唯一性;
3、会将一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式。
过程与方法目标:经历观察、比较、猜想、验证等数学学习活动,培养分析问题的能力和数学说理能力;
情感与态度目标
1、通过与一元一次方程的类比,探究二元一次方程及其解的概念,进一步培养运用类比转化的思想解决问题的能力;
2、通过对实际问题的分析,培养关注生活,进一步体会方程是刻画现实世界的有效数学模型,培养良好的数学应用意识。
二、重点、难点
重点:二元一次方程的概念及二元一次方程的解的概念。
难点
1、了解二元一次方程的解的不唯一性和相关性。即了解二元一次方程的解有无数个,但不是任意的两个数是它的解。
2、把一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式,其实质是解一个含有字母系数的方程。
三、教学方法与教学手段
1、 通过创设问题情境,让学生在寻求问题解决的过程中认识二元一次方程,了解二元一次方程的特点,体会到二元一次方程的引入是解决实际问题的需要。
2、 通过观察、思考、交流等活动,激发学习情绪,营造学习气氛,给学生一定的时间和空间,自主探讨,了解二元一次方程的解的不唯一性和相关性。
3、 通过学练结合,以游戏的形式让学生及时巩固所学知识。
四、教学过程
创设情境 导入新课
1、一个数的3倍比这个数大6,这个数是多少?
2、写有数字5的黄卡和写有数字2的蓝卡若干张,问黄卡和蓝卡各取几张,才能使取到的卡片上的数字之和为22?
思考:这个问题中,有几个未知数?能列一元一次方程求解吗?如果设黄卡取x张,蓝卡取y张,你能列出方程吗?
3、在高速公路上,一辆轿车行驶2时的路程比一辆卡车行驶3时的路程还多20千米。如果设轿车的速度是a千米/时,卡车的速度是b千米/时,你能列出怎样的方程?
师生互动 探索新知
1、 发现新知
引导学生观察所列的方程: 这两个方程有哪些共同特征?这些特征与一元一次方程比较,哪些是相同的,哪些是不同的?你能给它们取个名字吗?
根据它们的共同特征,你认为怎样的方程叫做二元一次方程? (二元一次方程的定义:含有两个未知数,且含有未知数的项的次数都是一次的方程叫做二元一次方程。)
2、 巩固新知
判断下列各式是不是二元一次方程(1) (2) (3) (4)
五、 总结
比较一元一次方程和二元一次方程的相同点和不同点
相同点: 方程两边都是整式,含有未知数的项的次数都是一次。
如果一个方程含有两个未知数,并且所含未知项都为1次方,那么这个整式方程就叫做二元一次方程,有无穷个解,若加条件限定有有限个解。
元一次方程教学设计【第三篇】
一、内容和内容解析
1、内容
代入消元法解二元一次方程组
2、内容解析
二元一次方程组是解决含有两个提供运算未知数 的问题的有力工具,也是解决后续一些数学问题的基础。其解法将为解决这些问题的工具。如用待定系数法求一次函数解析式,在平面直角坐标系中求两直线交点坐标等。
解二元一次方程组就是要把二元化为一元。而化归的方法就是代入消元法,这一方法同样是解三元一次方程组的基本思路,是通法。化归思想在本节中有很好的体现。
本节课的教学重点是:会用代入消元法解一些简单的二元一次方程组,体会解二元一次方程组的思路是消元。。
二、目标和目标解析
1、教学目标
(1)会用代入消元法解一些简单的二元一次方程组
(2)理解解二元一次方程组的思路是消元,体会化归思想
2、教学目标解析
(1)学生能掌握代入消元法解一些简单的二元一次方程组的一般步骤,并能正确求出简单的二元一次方程组的解,
(2)要让学生经历探究的过程。体会二元一次方程组的解法与一元一次方程的解法的关系,进一步体会消元思想和化归思想
三、教学问题诊断分析
1、学生第一次遇到二元问题,为什么要向一元转化,如何进行转化。需要结合实际问题进行分析。由于方程组的两个方程中同一个未知数表示的是同一数量,通过观察对照,可以发现二元一次方程组向 一元一次方程转化的思路
2、解二元一次方程组的步骤多,每一步需要理解每一步的目的和依据,正确进行操作,把探究过程分解细化,逐一实施。
本节教学难点理:把二元向一元的转化,掌握代入消元法解二元一次方程组的一般步骤。
四、教学过程设计
1、创设情境,提出问题
问题1
篮球联赛中,每场都要分出胜负,每队胜1场得2分,负1场得1分,某队10场比赛中得到16分,那么这个队胜负场数分别是多少?你能用一元一次方程解决这个问题吗?
师生活动:学生回答:能。设胜x场,负(10-x)场。根据题意,得2x+(10-x)=16
x=6,则胜6场,负4场
教师追问:你能根据问题中的等量关系列出二元一次方程组吗?
师生活动:学生回答:能设胜x场,负y场。根据题意,得
我们在上节课,通过列表找公共解的方法得到了这个方程组的解,x=6,y=4。显然这样的方法需要一个个尝试,有些麻烦,能不能像解一元一次方程那样来求出方程组的解呢?
这节课我们就来探究如何解二元一次方程组。
设计意图:用引言的问题引人本节课内容,先列一元一次方程解决这个问题,再二元一次方程组,为后面教学做好了铺垫。
问题2 对比方程和方程组,你能发现它们之间的关系吗?
师生活动:通过对实际问题的分析,认识方程组中的两个y都是这个队的负场数,由此可以由一个方程得到y的表达式,并把它代入另一个方程,变二元为一元,把陌生知识转化为熟悉的知识。
师生活动:根据上面分析,你们会解这个方程组了吗?
学生回答:会。
由①,得y=10-x ③
把③代入②,得2x+(10-x)=16 x=6
设计意图:共同探究,体会消元的过程。
问题3 教师追问:你能把③代入①吗?试一试?
师生活动:学生回答:不能,通过尝试,x抵消了。
设计意图:由于方程③是由方程①,得来的,它不能又代回到它本身。让学生实际操作,得到体验,更好地认识这一点。
教师追问:你能求y的值吗?
师生活动:学生回答:把x=6代入③得y=4
教师追问:还能代入别的方程吗?
学生回答:能,但是没有代入③简便
教师追问:你能写出这个方程组的解,并给出问题的答案吗?
学生回答:x=6,y=4,这个队胜6场,负4场
设计意图:让学生考虑求另一个未知数的过程,并如何优化解法。
师生活动:先让学生独立思考,再追问在这种解法中,哪一步最关键?为什么?
学生回答:代入这一步
教师总结:这种方法叫代入消元法。
教师追问:你能先消x吗?
学生纷纷动手完成。
设计意图:让学生尝试不同的代入消元法,为后面学习选择简单的代入方法做铺垫。
2、 应用新知,拓展思维
例 用代入法解二元一次方程组
师生活动,把学生分两组,一组先消x, 一组先消y,然后每组各派一名代表上黑板完成。
设计意图:借助本题,充分发挥学生的合作探究精神,通过比较,让学生自主认识代入消元法,并学会优选解法。
3、加深认识,巩固提高
练习 用代入法解二元一次方程组
设计意图:提醒并指导学生要先分析方程组的结构特征,学会优选解法。在练习的基础上熟练用代入消元法解二元一次方程组。
4、归纳总结,知识升华
师生活动,共同回顾本节课的学习过程,并回答以下问题
1、 代入消元法解二元一次方程组有哪些步骤?
2、 解二元一次方程组的基本思路是什么?
3、在探究解法的过程中用到了哪些思想方法?
4、你还有哪些收获?
设计意图:通过这一活动的设计,提高学生对所学知识的迁移能力和应用意识;培养学生自我归纳概括的能力。
5、 布置作业
教科书第93页第2题
五、目标检测设计
用代入法解下列二元一次方程组
设计意图:考查学生对代入法解二元一次方程组的掌握情况。
元一次方程教学设计【第四篇】
一、教学目标
(一)教学知识点
1、代入消元法解二元一次方程组。
2、解二元一次方程组时的消元思想,化未知为已知的化归思想。
(二)能力训练要求
1、会用代入消元法解二元一次方程组。
2、了解解二元一次方程组的消元思想,初步体会数学研究中化未知为已知的化归思想。
(三)情感与价值观要求
1、在学生了解二元一次方程组的消元思想,从而初步理解化未知为已知和化复杂问题为简单问题的化归思想中,享受学习数学的乐趣,提高学习数学的信心。
2、培养学生合作交流,自主探索的良好习惯。
二、教学重点
1、会用代入消元法解二元一次方程组。
2、了解解二元一次方程组的消元思想,初步体现数学研究中化未知为已知的化归思想。
三、教学难点
1、消元的思想。
2、化未知为已知的化归思想。
四、教学方法
启发自主探索相结合。
教师引导学生回忆一元一次方程解决实际问题的方法并从中启发学生如果能将二元一次方程组转化为一元一次方程。二元一次方程便可获解,从而通过学生自主探索总结用代入消元法解二元一次方程组的步骤。
五、教具准备
投影片两张:
第一张:例题(记作7。2 A);
第二张:问题串(记作7。2 B)。
六、教学过程
Ⅰ、提出疑问,引入新课
[师生共忆]上节课我们讨论过一个希望工程义演的问题;没去观看义演的成人有x个,儿童有y个,我们得到了方程组 成人和儿童到底去了多少人呢?
[生]在上一节课的做一做中,我们通过检验 是不是方程x+y=8和方程5x+3y=34,得知这个解既是x+y=8的解,也是5x+3y=34的解,根据二元一次方程组解的定义得出 是方程组 的解。所以成人和儿童分别去了5个人和3个人。
[师]但是,这个解是试出来的。我们知道二元一次方程的解有无数个。难道我们每个方程组的解都去这样试?
[生]太麻烦啦。
[生]不可能。
[师]这就需要我们学习二元一次方程组的解法。
Ⅱ、讲授新课
[师]在七年级第一学期我们学过一元一次方程,也曾碰到过希望工程义演问题,当时是如何解的呢?
[生]解:设成人去了x个,儿童去了(8—x)个,根据题意,得:
5x+3(8—x)=34
解得x=5
将x=5代入8—x=8—5=3
答:成人去了5个,儿童去了3个。
[师]同学们可以比较一下:列二元一次方程组和列一元一次方程设未知数有何不同?列出的方程和方程组又有何联系?对你解二元一次方程组有何启示?
[生]列二元一次方程组设出有两个未知数成人去了x个,儿童去了y个。列一元一次方程设成人去了x个,儿童去了(8—x)个。y应该等于(8—x)。而由二元一次方程组的一个方程x+y=8根据等式的性质可以推出y=8—x。
[生]我还发现一元一次方程中5x+3(8—x)=34与方程组中的第二个方程5x+3y=34相比较,把5x+3y=34中的y用8—x代替就转化成了一元一次方程。
[师]太好了。我们发现了新旧知识之间的联系,便可寻求到解决新问题的方法即将新知识转化为旧知识便可。如何转化呢?
[生]上一节课我们就已知道方程组的两个未知数所包含的意义是相同的。所以将 中的①变形,得y=8—x ③我们把y=8—x代入方程②,即将②中的y用8—x代替,这样就有5x+3(8—x)=34。二元化成一元。
上一篇:八年级物理密度教学设计精编3篇
下一篇:教学设计方案最新4篇