《比的应用》教学设计【热选4篇】

网友 分享 时间:

【前言导读】此篇优秀范文“《比的应用》教学设计【热选4篇】”由阿拉题库网友为您精心整理分享,供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载吧!

《比的应用》教学设计【第一篇】

教材分析

《比的应用》是新世纪小学数学六年级上册的内容,是在学生理解了比的意义、比的化简、比与分数的联系、以及掌握用分数乘、除法解决简单问题的基础上,把比的知识应用于解决相关的实际问题的一个课例。比的应用又称按比例分配,按比例分配有按正比例分配和反比例分配两种,由于按反比例分配的实际应用并不广泛,而且可以转化为按正比例分配来解答,因此教材只教学按正比例分配。按比分配是“平均分”问题的发展,平均分是按比分配的特例。研究比的应用,也为以后学习 “比例”、“比例尺”的知识奠定基础。

教材有两部分内容:分一分和算一算。分一分:创设一个给两个班的小朋友分橘子的情境,鼓励学生通过实际操作,在交流不同分法的过程中体会到1:1分配的不合理性,产生按比分配的需要,同时体会按比分配在生活当中的实际应用;算一算:在有了实际操作的基础上,解决把140个橘子按3:2分给两个班,引导学生自主探索出不同的解决问题的策略,鼓励学生运用合理的解题策略解决实际问题。

学生分析

学生在二年级上册学习了除法的意义,了解了“平均分”,即按1:1分,学生在五年级上册学过分数的意义、分数与除法的关系,本单元学习了比的意义和比的化简。由于比与除法、分数有着密切的联系,所以,比的很多基础知识与除法、分数的相关知识具有明显的、可供利用的内在联系,这些对于学生学习比的应用奠定了良好的知识基础。

比的知识在生活中有着很广泛的应用,因此,学生也有一定的经验基础。因此,教学这部分内容时,应当充分利用原有的学习基础,引导学生联系相关的已学知识,进行类比和推理,尽可能让学生自主学习,通过自己的思考,推出新结论,解决新问题。

教学目标

1、能运用比的意义解决按照一定的比进行分配的实际问题,进一步体会比的实际意义;

2、让学生通过观察、操作,经历与他人交流各自解题策略的过程,体验策略的多样性,并选择合适的方法;

3、使学生在探索未知、寻求成果的过程中品味学习的乐趣,并养成积极、主动的探究精神。

教具准备

课前准备:学生查找有关事物各组成部分比的资料,课前让学生熟悉用量杯量取溶液的方法。

课上准备:有关课件、黄、蓝色颜料、量杯等。

教学重点理解按比分配的实际意义,并能运用比的意义解决按照一定的比进行分配的实际问题。

教学难点理解按比分配的实际意义,沟通比与分数之间的联系。

教学设计

一、情境导入

情境一:师:作为一个大连人,你对自己的家乡熟悉吗?大连给你留下最深的印象是什么?我今天特地给同学们带来几幅大连的风光图,咱们一起去看看。(课件演示)

看过之后,你对大连又有什么感受?如果把这些美丽的景色画下来?那主色调应该是什么色?(板书:绿)

现在我们就来调配绿色,为大连画一幅美丽的图画。谁知道绿色是怎么配出来的?(板书:黄+蓝——绿)

策略说明:优美的风景与和谐的音乐会把学生带入了一个轻松的世界,会使数学学习活动在一种轻松愉悦的氛围中展开。这种直观的图片不仅会激发学生对家乡的热爱之情,更会自然地引入到“绿色是怎么调配出来的”这一主题。

情境二:同学们,你们在美术课上学过三原色,三原色中有绿色吗?绿色是怎么调配出来?(板书:黄+蓝——绿)

策略说明:根据武秀华老师的建议“尽量简约,尽量直奔主题,不要做过多的渲染”,开门见山,直奔主题。

二、实验操作

1、动手操作,调配绿色

师:今天,咱们就用这两种颜色调配出绿色。(每组准备了蓝色和黄色颜料,一个小量杯,一个大量杯,大量杯上贴上组号)

要求:以小组为单位进行调配;各小组在调配之前先商量好每种颜色各用多少ml,用小量杯量取黄色与蓝色颜料,记录下数据之后倒入大量杯并搅拌。组内先进行分工,然后再动手操作,看哪个小组的动作最快。

(学生动手操作,老师进行指导。)

配好之后,小组长把调好的绿色放在前面一字排开,并将数据写在黑板上统计表中。

策略说明:数学内容的呈现应该是现实的、生活化的,尤其是贴近学生的生活实际,使学生体会数学与生活的联系,体会数学的应用价值。因此,教师要联系学生生活,就地取材,将贴近学生生活的题材充实到教学中去,从而丰富学生的学习材料。调配绿色是现实而有趣的学习活动,也是学生喜闻乐见的,学生是乐于参与的。第一次的配色活动没有给学生规定统一的数据,目的是让学生在自由活动的过程去观察和发现不同的结果,从而得出结论。

2、观察发现,得出结论

(1)观察。师:结合这些数据,再观察这些绿色,你发现了什么?(学生会发现,同样是用黄色与蓝色配,调出来的绿色却不一样)

师:为什么每组都用黄色和蓝色的颜料配绿色,调出来的绿色却不一样呢?结合数据自己先独立思考,然后把你的想法在小组内交流一下。

学生调配的绿色可能会出现如下情况:

① 所有的小组所用的数据都不一样,则所配出来的绿色各不相同。学生可能会说所取的黄与蓝的量不同,所以颜色不同。师:“还有不同的想法吗?’’如果没有,再出示黄与蓝体积比为3:2的大小两杯绿色,量不同,但颜色却相同,以此引发学生思考。

② 有两组或两组以上的数据完全相同,则这几组配出来的绿色完全一样。这种情况也分为两种,一种是每组所取的黄色与蓝色同样多,如20ml的黄色和20ml的蓝色,即黄色与蓝色的比为1:1,还有一种是每组取得黄色是相同的,蓝色也是相同的,如每组都取20ml和黄色和30ml和蓝色。教师可以引导学生思考:为什么这几组能配出来相同的绿色呢?

③ 有两组或两组以上的数据不同,但配出来的绿色完全一样,即每组所取黄色与蓝色的比相同。教师可以引导学生思考:为什么这几组能配出来相同的绿色呢?

(2)得出结论。师:用什么办法使各组能配出非常接近甚至是一样的绿色呢?

根据以上的数据,学生很有可能回答:每个组用的蓝色和黄色的量同样多就可以调配出完全一样的绿色,但如用此方法,则只能调配出一种绿色来,答案有局限性;学生也可能回答:每个组用的黄色一样多,用的蓝色也一样多,如每组都用10g黄色和30g蓝色,但用此方法,每组必须用同样多的量,如果有的组根据需要想多配点,怎么办?答案也有局限性;学生可能会想到,每组所用的量可以不相等,但只要所取的黄色与蓝色的体积比是一定的,如每组的黄色与蓝色的比都是 1:3,就可以调配出完全一样的绿色来。

(3)将统计表中各组所用蓝色与黄色的最简体积比写出来,引导学生再结合杯中的绿色观察,看所得结论是否正确。

师:其实刚才同学们说的用黄色与蓝色同样多也就是黄色与蓝色的体积比为1:1。

策略说明:这一过程,必须结合课堂上出现的情况进行教学,学生调配出来的绿色不可能是完全一样的,这一矛盾会极大的刺激学生各种感官,引出学生的探究欲望,并得出“只有各组所用黄色与蓝色的体积比相同,各组才能配出完全一样的绿色来”这一结论。学习的目的性加强了,孩子的学习兴趣被激发出来,由被动接受知识到主动去探究知识,对按比分配的实际意义有了深切的感悟。

3、再次调配黄色与蓝色的比为3:2的绿色。

(1)动手操作。师:我们需要调配出这种绿色(拿出事先调好的绿色),黄与蓝的比是3:2(板书),从3:2中你能得到什么数学信息?

学生可能的回答:在这瓶颜料中,黄色占其中3份,蓝色占其中2份;黄比蓝多1份,蓝比黄少1份;黄占绿的3/5,蓝占绿的2/5;黄占蓝的3/2,蓝占黄的2/3;黄比蓝1/2,蓝比黄少1/3等等。

策略说明:主要目的复习旧知,沟通比与分数的关系,为学习新知进行铺垫。

师:现在我们再来配一次绿色,所需要的黄色与蓝色的比为3:2,怎么配?

(2)小组进行动手操作,并记录分配的过程。反馈不同方法。全班观察杯中的绿色是否一样。

策略说明:在量取的过程中,学生将体会到黄色占了3份,蓝色占了2份,这为后面解决问题奠定了基础;在观察记录的过程中,学生会发现不管黄色与蓝色的量是多少,黄色与蓝色的体积比都是3:2,不仅可以巩固比的化简内容,还会使学生体会到黄色颜料扩大到原来的几倍,蓝色颜料也要扩大为原来的几倍,为学生今后学习正比例积累了经验。

三、动笔计算

1、出示问题:我配的绿色是120ml,黄色与蓝色的体积比为3:2,算一算我用的黄、蓝色各是多少ml?请一学生重复问题,教师在黑板上出示习题:用黄色和蓝色颜料调配出120ml的绿色,黄色与蓝色的体积比是3:2,黄色与蓝色各需多少ml?

2、学生独立试做,并交流不同的算法。学生可能出现的算法:

方法1:3+2=5 120×3/5=72ml 120×2/5=48ml

师:2/5和3/5各表示什么?说给同桌听一听。

方法2:3+2=5 120÷5×3=72ml 120÷5×2=48ml

师:谁能说说他是怎么想的?

方法3:解:设一份量为xml。

3x+2x=120

5x=120

x=24

3x=24×3=72

2x=24×2=48

方法4:3+2=5 120÷5/2=48ml 120÷5/3=72ml

3、比较几种方法之间的异同。师:同学们能用不同的方法解决这一问题,非常聪明,让我们再来看这两种方法(方法1和方法2),它们有什么联系?(把 120ml平均分成5份,取3份,实际上就是求120的3/5是多少)以前我们没学分数乘法时,同学们习惯用整数的方法做,现在根据分数与除法的关系,这样的题咱们就可以用分数的方法来解决。用分数方法解决这类题的关键是什么?(根据比找准谁占谁的几分之几)

4、如果我取60ml的黄色倒在杯子里,该往里倒多少ml的蓝色,才能配成黄与蓝比是3:2的绿色呢?请用分数的方法解决这个问题。

策略说明:我认为,通过计算解决按比分配的问题是学生应该掌握的,这一环节的设置主要是要让学生在解决问题的'过程中体会同一问题可以从不同角度去思考,得到不同的解决策略,这有利于学生思维的广度发展。其次,强化了用分数乘除法解题,因为用分数的方法有利于加强知识间的联系,使孩子的思维不仅仅局限于整数乘除法范畴,又上升了一个新的高度。再次书中的习题都是给出总量求部分量的题,而最后一题是已知部分量根据比求另一个部分量,因为这种问题在实际生活中很常见,虽然有一定难度,但由于数量简单,因此学生并不难解决

三、小结

像这样,把一个数量按照一定的比来进行分配,在生活中会常常遇到(板书:比的应用)。以前我们常说的平均分,实际上就是按照1:1的比进行分配的。课前,老师让同学们调查了一些事物各组成部分的比,现在就把你搜集到的资料在小组内跟同伴们交流交流。(汇报:谁能说给大家听一听)

策略说明:此环节第一个目的是让学生进一步体会按比分配在生活中的实际意义,另一个目的是还可以利用学生搜集的资料,改编成练习题,使学真实地感到数学与生活的联系。同时,学生搜集到的资料能够被老师所用,对学生来说也会感到很自豪,对学生的激励作用不言而喻。教师必须提前掌握学生搜集的资料,也可以为学生提供一些资料。

四、巩固应用

1、(资料)学生营养午餐中菜的供给量,应包括瓜果蔬菜类、大豆及其制品类、鱼肉禽蛋类等三类食物,这三类食物所占比分别为13:2:5左右为适宜。

师:一顿饭一个孩子大约需要100g菜,这100g菜中各类食物应该是多少克呢?你能用分数的方法解决这个问题吗?(做完同学在小组长的带领下,组内互相检查,并交流各自的做法。)教师再次提问:“你认为这道题最关键的环节是什么?”

2、同学们正是长身体的时候,饮食上要合理,不要挑食。如果营养搭配不当,很可能出现这种情况。(出示:大头娃娃图)

老师看到同学们搜集到了这样一条信息:人们经过测量和统计,发现12周岁的儿童,头部与头部以下的高度比一般是2:13。和同桌说说从这个比中你还能知道哪些信息。

咱们来验证一下这条信息是否准确。请一名学生到讲台前,先估计一下她的头部大约有多长?(实际测量)请同学们根据头部与头部以下的高度比是2:13来算算她大约有多高。

(反馈:拿学生的本在投影上展示,同时由学生讲述各种方法。)

你们都知道自己的身高吧?有没有兴趣算一算自己头部的长度?(算完之后,同组内成员可以互相量一量,验证一下算得对不对。)

策略说明:巩固应用部分的两个练习的设计,充分体现了“学生活中的数学、学有用的数学”这一理念。生活中应用按比分配的例子很多,孩子搜集到的有关资料都是可利用的资源,直接用孩子的资料编题,寻找解决问题的策略,可以让孩子进一步感受到这样的知识在生活中应用十分广泛,体会到学习数学的价值;其次,这些内容都是学生身边的事,和他们的生活息息相关,同时又是学生感兴趣的,学生在学习时不仅不会感到枯燥,同时他们用今天学过的知识解决了身边的数学问题,会有一种成就感与满足感,这样“身临其境”地学数学,学生不会有一种突冗的陌生感,反之具备了一种似曾相识的接纳心理。

四、总结。

1、刚才我们根据2:13这个比解决了几个问题?这两个问题有什么不同?不管是给出部分量,根据比求总量,还是给出总量,根据比求部分量,都属于比的应用的问题。解决这类问题可以采取什么策略?

2、你今天有什么收获?生活中按比分配的问题还有很多,希望同学们能用今天学过的知识解决更多生活中的问题。

《比的应用》教学设计【第二篇】

教学要求:

教学目标:

1、让学生经历解决生活中实际问题的过程,使学生掌握用方程解答“已知一个数的几分之几是多少,求这个数”的应用题;

2、通过分析解决问题的学习活动,培养学生分析问题和解决问题的能力。

教学重点:找准单位“1”,找出数量关系。

教学难点:能正确地分析数量关系并列方程解答应用题。教学过程:

一、谈话激趣,复习辅垫

1.找出单位“1”,写出数量关系式

(1)杨树的棵数是柳树的1/3.

(2)红花朵数的1/2相当于黄花的朵数。

(3)白兔只数的5/6是黑兔的只数。

(4)一批化肥运走3/8。

2.师生交流

师:同学们,你们知道在我们体内含量最多的物质是什么吗?(水)对,水是我们体内含量最多的物质,它对我们人体是至关重要的,是构成我们人体组织的'主要成分。那么你们了解体内水分占体重的几分之几吗?

师:老师查到了一些资料,我们一起来看一下。(课件出示)师:你能算出自己体内的水分吗?(学生回答)师:一儿童的体重是35千克,你们能帮他算出他体内水分的质量吗?生回答后出示:儿童的体重×4/5=儿童体内水分的重量

35×4/5=28(千克)

师:谁还能根据另一个信息写出等量关系式?成人的体重×2/3=成人体内的水分的重量

3.揭示课题

师:同学们以前的知识学得可真好,如果老师告诉你们小朋友们体内有28千克水分,你们能算出他的体重吗?这就是我们今天要来研究的分数除法应用题。

二、引导探究,解决问题

1.课件出示例题。

2.合作探究

师:同桌互相商量一下,要解决这个问题,数量关系是怎样的?用自己喜欢的方式把它表示出来并解答出来。

3.学生汇报

生1:根据数量关系式:儿童的体重×4/5=儿童体内水分的重量,再根据关系式列出方程进行解答。(师随着学生的发言随机出示课件)生2:直接用算术方法解决的,知道体重的4/5是28千克,就可以直接用除法来做。

28÷4/5=35(千克)

4.比较算术做法与方程做法的优缺点。

5.对比小结

和前面复习题进行比较一下,看看这道题和复习题有什么异同?

(1)看作单位“1”的数量相同,数量关系式相同。

(2)复习题单位“1”的量已知,用乘法计算;例1单位“1”的量未知,可以用方程解答。(或用除法计算)

(3)因为它们的数量关系式相同,所以这两种题目的解题思路是一致的,都是先找出把哪个数量看作单位“1”,根据单位“1”是已知还是未知,再确定是用乘法解还是方程解。

6.试一试:一条裤子的价格是75元,是一件上衣的2/3。一件上衣多少元?

问:这道题已知什么?求什么?谁和谁在比?哪个量是单位“1”?单位“1”是已知还是未知的?

根据学生回答画线段图。根据题中的数量关系找学生列出等量关系式。学生根据等量关系式列方程解答(找学生板演,其他学生在练习本上做)。

师:这道题你还能用其它方法解答吗?

(根据分数除法的意义,已知两个因数的只与其中一个因数,求另一个因为用除法计算。)

三、联系实际,巩固提高1.练一练:

(1).小明体重24千克,是爸爸体重的3/8,爸爸体重是多少千克?

(2).一个修路队修一条路,第一天修了全长的2/5,正好是160米,这条路全长是多少米?

2.对比练习

(1)一条路50千米,修了2/5,修了多少千米?

(2)一条路修了50千米,修了2/5,这条路全长是多少千米?

(3)一条路50千米,修了2/5千米,还剩多少千米?

四、全课小结畅谈收获

(教师强调:分析应用题数量关系比较复杂,因此在解答分数应用题时要注意借助线段图来分析题中的数量关系,解答后要注意检验。)

《比的应用》教学设计【第三篇】

教材第43页例2,练习十一第4、5题。

教学目标:

1.使学生进一步掌握平均数的意义和求平均数的方法。

2.懂得平均数在统计学上的意义和作用。

3.培养学生能够灵活运用所学的知识,灵活的`解决一些简单的实际问题。

教学重点:

掌握平均数的意义。

教学难点:

掌握求平均数的方法。

教学过程:

一、复习引入

三年级二班分成三组投小篮球,第一组投中28个,第二组投中33个,第三组投中23个,平均每一组投中多少个?

提问:题目的已知条件和问题分别是什么?

要求平均每一组投中多少个?应该怎样列?

提问:(28+33+23)3表示什么?3表示什么?把投中的总数以3表示什么?

二、快乐体验,学习新知

1、出示教科书第43页的例题2。

提问:从这两张统计表中,大家发现了什么?

在一场篮球比赛中,除了技术因素以外,还有什么因素也比较重要?

场上哪一个对的身高占优势,我们能根据个别队员来作判断吗?我们要看整个对的平均身高。现在就请大家算一算,哪一个对的平均身高占优势。

2、学生动手列式计算。

3、教师:从这两个平均数,能反映出这两个队除技术外的另一个实力,说明平均书可以反映一组数据的总体情况和区别于不同数据的总体情况,这是我们学习平均数的一个重要的作用。

三、巩固练习

1、科书第45页练习十一的第4题:

(1)完成第1小题。提问:什么叫月平均销售量?

要求哪种饼干月平均销售量多?多多少?应该怎样列式?

(2)完成第2小题让学生自由发表看法。

(3)完成第3小题。你从图中还得到什么信息,告诉全班同学。

2、练习十一的第5题。

学生独立完成,集体订正。

四、课堂小结:

本节课学习了什么?你有什么收获?

《比的应用》教学设计【第四篇】

教学目标:

1、使学生经历从实际生活中发现问题、提出问题、解决问题的过程,在解决问题的过程中巩固两位数乘两位数的计算方法。

2、能灵活运用不同的方法解决简单的实际问题,提高解决问题能力;感受数学在日常生活中的应用,初步形成综合运用数学知识解决问题的能力。

教学重点:

在解决问题的过程中巩固两位数乘两位数的计算方法。

教学难点:

形成综合运用数学知识解决问题的能力。

教学准备:

小黑板

教学设计

一、情境导入

师:这几天,我们学习了两位数乘两位数的口算和笔算,这一节课,刘老师和同学们用两位数乘两位数的知识解决实际问题。先来看一下本节课的教学目标:

二、目标导学

1、经历从实际生活中发现问题、提出问题、解决问题的过程,在解决问题的过程中巩固两位数乘两位数的计算方法。

2、能灵活运用不同的方法解决简单的实际问题,提高解决问题能力。(让学生看看教学目标,并让一个学生读一读

三、独立解答、小组合作解决问题

师:每当夜幕降临,街道上就亮起五彩缤纷的霓虹灯,我们的城市和建筑物在灯光的映射下显得更加迷人和漂亮,请同学们打开课本36页,我们一块来欣赏一下这迷人的夜景。(学生们看书36页夜景图)

师:夜景迷人吗?(生:迷人)通过欣赏夜景图,你都发现了哪些数学信息?

生一:48根灯条,每根71个灯泡

生二:一个广告灯一天的。租金是45元,这条街上有29个同样的广告灯

生三:A型车限乘25人,B型车限乘8人,A租4辆型车正好。

生四:5棵树用75米彩灯线,用400米彩灯线装饰剩下的25棵树,够吗?

(通过让学生说数学信息,培养学生完整、正确表达的好习惯)

师:根据你发现的信息能提出哪些数学问题?

(学生各抒己见)

师:刚才同学们提了很多数学问题,都非常的好,今天咱们着重来解决这四个问题,把其余的放入问题口袋,再一节课再来研究。

出示四个问题:

1、一共有多少个灯泡?

2、29个同样的广告灯一天的租金多少元?

3、A型车限乘25人,B型车限乘8人,A租4辆型车正好。如果租B型车,需要多少辆?

4、5棵树用75米彩灯线,用400米彩灯线装饰剩下的25棵树,够吗?

师:同学们看看这四个问题,你会解答吗?下面请同学们在练习本上独立解答出来。

(学生独立解答,教师巡视大约10分钟)

师:刘老师看大部分同学做完了,而且发现没做完的同学的原因是做题过程中遇到了一点小麻烦,不要紧,下面咱们以小组为单位,把你的解题思路先在小组内交流一下,不会的地方提出来,同学们共同帮助你,待会再在班内交流。

(学生小组交流,教师巡视,看看各小组讨论情况)

师:各小组都讨论完了,下面请小组的同学上来汇报。

小组同学就各问题汇报,不对的和不完整的其余各小组及时纠正和补充。

师:刚才同学们讲的都很棒,特别是第3个问题和第4各问题。第3个问题同学们想的很周到,生活中经常遇到这样的问题,到底是舍去还是向前进一,根据生活实际情况解决;第4个问题同学们想到了那么多的解答方法,根据自己的情况选择喜欢的解答方法。

四、自主练习

教材37页第3题和第5题(学生独立解决,小组讨论订正,不会的再在班内交流)

22 314549
");