《分数基本性质》教学设计精彩4篇

网友 分享 时间:

【前言导读】此篇优秀范文“《分数基本性质》教学设计精彩4篇”由阿拉题库网友为您精心整理分享,供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载吧!

五年级数学《分数基本性质》教案【第一篇】

教学内容:省编义务教材第十册第91—93页例1、例2。

教学目标:

1、体验分数基本性质的探究过程,建构分数基本性质的意义内涵。

2、沟通分数的基本性质和商不变性质的内在联系,实现新知化归旧知,并与后面约分和通分的学习作好前期孕伏。

3、通过猜想、验证、得出结论这充分自主的数学活动,促进学生学习经验的不断积累。

课前准备:

课件,学具袋一个(线段图纸、长方形、绳子)、探究纸一张

教学过程:

1、创设情境,作好铺垫

出示四分之二后说:老师的信封里有一道算式,这道算式和这个分数的值相等,你们猜这是一道怎样的算式?(除法算式。)你能具体猜出是怎样一道除法算式。(2÷4)

为什么你会猜是一道除法算式?(分数与除法有密切的关系)

除法与分数有什么样的关系?

(黑板上出示:被除数÷除数=)

根据2÷4这道除法算式,每人都试着说一道与它相等的除法算式。(根据学生板书:1÷23÷64÷85÷10100÷……)

为什么你认为100÷与2÷4的商是一样的?(2和4同时乘以50商不变,这是根据商不变性质)

什么是商不变性质?(出示:被除数和除数同时乘以或除以相同的数(0除外),商不变。)

2、迁移猜想,引疑激思

分数与除法有这样的关系,除法中有商不变性质,那你们猜分数中有可能存在着类似的性质吗?(有)你能具体说一说?

交流得出:分子和分母同时乘以或除以相同的数(0除外),分数的大小不变。

3、自主探究,验证猜想

也许你们的猜想是正确的,科学家的发现往往也是从猜想开始的,但是只有通过验证得到的结论才是科学的,这节课我们也学着来做一名小数学家。

(1)初步验证

①出示:探究报告单,让学生读要求:

a.同桌合作:两人各写一个分数,将它的分子、分母同时乘以或除以一个相同的数,算出新的分数。

b.选择合理的方法验证所前后两个分数是否相等。

c.填写好探究报告单。

选择探究的

分 数

分子和分母同时乘以或除以

一个相同的数

得到的

分 数

选择的分数与得到的分数是否相等

相等( ) 不相等( )

猜想是否成立

成立( ) 不成立( )

选择的分数与得到的分数是否相等相等()不相等()

猜想是否成立成立()不成立()

*:验证方法可用折纸、画线段图、计算、实物……

②学生合作进行探究。

③全班交流:

a、同桌一起上来,拿好探究报告单及验证材料等。

b、两人合作,一人讲解、一人验证演示。

c、得到结论:

(交流2-3组后)问全班同学:你们得到怎样的结论?(一致通过)

刚才我们通过集体努力用不同的方法、不同的分数验证了我们的猜想是成立的。这就是分数的基本性质,板书:分数的基本性质。(齐读)

4、议论争辩,顿悟创新

读一读分数的基本性质,你认为哪些字词是比较重要的。这里的“相同的数”指的是什么数?为什么要“0除外”?

5、训练技能,激励发展

刚才我们通过自己的猜想、验证得出的这条规律,学习了分数的基本性质,到底有什么作用呢?让我们一起来体会一下。

(1)练习明目的

根据分数的基本性质,填空。

1/2=()/8=5/()=()/6=7/()

采取师生对数的游戏形式进行,如先由教师出分子,再让学生对出分母,也可以先由学生出分母,再让教师对出分子。

(2)慧眼辩是非

(3)变式练思维

把下面每组中的异分母分数化成同分母分数。

A、3/4,4/7B、5/6,4/9C、3/5,5/8

分数的分母相同了,有什么作用?揭示学习分数的基本性质的重要性,鼓励学生学好、用好。

(4)竞赛促智慧

①在1—9九个数字中任选一些数字组成大小相等的分数。

可以有:1/2=3/6=4/81/3=2/62/3=4/6这三组。

并让学生继续往下说,从而得出:任何一个分数与之相等的分数有无数个。

②出示:1/a=7/b(说明:a、b都不是0。)

抢答:a=2、a=3、a=6、b=28、b=56时a或b的值。

连贯口答:a=1、2、3、4、5……时b的值。(渗透正比例)

讨论:a、b之间的关系是怎样的?为什么会存在这样的关系?依据是什么?

6、回顾,掌握方法

今天这节课我们学习的分数的基本性质,回忆一下我们是怎样学习的?

学生可能会回答:

生1:我们是根据“商不变的性质”来学习“分数的基本性质”的。

生2:我们是通过猜测的方法学的。

生3:我们还用验证的方法学习。

……

结果语:是的,这节课,我们利用除法和分数的关系以及商不变性质,猜想出分数的基本性质,并且进行了验证与运用,其实数学知识都是相互联系的,学习数学就要学会利用已有知识,去学习新的知识,这就是学习数学的一把金钥匙。老师把这把金钥匙送给每一位同学。

五年级数学《分数基本性质》教案【第二篇】

教学目标:

1、经历探索分数的基本性质的过程,理解分数的基本性质。能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数。

2、经历观察、操作和讨论等学习活动,并在探索过程中,能进行有条理的思考,能对分数的基本性质作出简要的、合理的说明。培养学生的观察、比较、归纳、总结概括能力。能根据解决问题的需要,收集有用的信息进行归纳,发展学生的归纳、推理能力。

3、经历观察、操作和讨论等数学学习活动,使学生进一步体验数学学习的乐趣。体验数学与日常生活密切相关。

教学重点:

理解分数的基本性质。

教学难点:

能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数

教学过程:

一、创设情境,激趣引新,

1、师:故事引入,揭示课题

同学们,你们听说过阿凡提的故事吗?今天老师这里有一个 “老爷爷分地”的数学故事,你们想听吗?(课件出示画面)谁愿意把这个故事讲给大家听?指名读故事(尽可能有感情地)

故事:有位老爷爷要把一块地分给他的三个儿子。老大分到了这块地的,老二分到了这块地的 ,老三分到了这块的。老大、老二觉得自己很吃亏,于是三人就大吵起来。刚好阿凡提路过,问清争吵的原因后,哈哈大笑了起来,给他们讲了几句话,三兄弟就停止了争吵。

2、师:你知道,阿凡提为什么会笑吗?他对三兄弟讲了哪些话?

3、学生猜想后畅所欲言。

4、同学们的想法真多啊!聪明的阿凡提是怎么让三兄弟停止争吵的?

二、探究新知,解决问题

1动手操作、形象感知

(1)、三兄弟分的地真得一样多吗?你能用自己的方法证明吗?

(2)学生独立操作验证。

方法1、涂、折、画的方法

方法2、计算的方法。

方法3:商不变的性质。

(3)观察,说说你发现了什么?

五年级数学《分数基本性质》教案【第三篇】

(1)请同学们认真观察,同桌之间说一说这三个图形的涂色部分分别表示什么意义,并用分数表示出来。

(3)观察,说说你发现了什么? = = (课件揭示)

(4)交流:你还有什么发现?

分数的分子和分母变化了,分数的大小不变。

分数的分子和分母都乘以相同的数,分数的大小不变。

(板书:都乘以 相同的数)(课件演示)

3、出示做一做图片(2),学生独立填写分数。

(1)说说你是怎么想的?

(2)交流,你发现了什么?(分数的分子和分母都除以相同的数,分数的大小不变。)(板书:都除以 相同的数)

4、想一想:引导归纳分数的基本性质

(1)从刚才的演示中,你发现了什么?

板书:分数的分子、分母都乘以或除以相同的数,分数的大小不变。

(2)补充分数的基本性质:课件出示两个式子,问学生对不对?讲解关键词“都”、

“相同的数”、“0除外”。 “都”可以换成哪个词?——“同时”。

板书:分数的分子、分母都乘以或除以相同的数(0除外),分数的大小不变。

(3)揭题:分数的基本性质。先让学生在课本中找出分数基本性质中的关键字词并做上记号(画起来或圈出来),要求关键的字词要重读。(课件揭示)

5、梳理知识,沟通联系:分数基本性质与学过的什么知识有联系?你能举例说说吗?师:我们学习了分数与除法的关系,知道分数可以写成除法的形式。现在我们把商不变性质,分数基本性质,分数与除法的关系这三者联系起来,你发现了什么?(生举例验证,如:3/4=3÷4=(3×3)÷(4×3)=9÷12=9 /12)(课件揭示)

师:其实,数学知识中有许多地方是像商不变性质和分数基本性质一样相互沟通的,同学们要学会灵活运用,才能做到举一反三,触类旁通,取得事半功倍的效果。你们想挑战吗?

6、趣味比拼,挑战智慧

给你们一分钟时间,写出几个相等的分数,看谁写得既对又多。

交流汇报后,提问:如果给你时间,你还能不能写,到底能写几个?

三、多层练习,巩固深化。

1、考考你(第43页试一试和练一练第2题)。

2/3=( )/18 6/21=2/( )

3/5 =21/( ) 27/39=( )/13

5/8=20/( ) 24/42=( )/7

4/( )=48/60 8/12=( )/( )

2、涂一涂,填一填。(练一练第1题)

3、请你当法官,要求说出理由。(手势表示。)

(1)分数的分子、分母都乘或除以相同的数,分数的大小不变。( )

(2)把 15/20的分子缩小5倍,分母也同时缩小5倍,分数的大 小不变。( )

(3)3/4的分子乘3,分母除以3,分数的大小不变。 ( )

(4) 10/24=10÷2/24÷2=10×3/24×3 ( )

(5)把3/5的分子加上4,要使分数的大小不变,分母也要加上4。( )

(6)3/4=3×0/4 ×0=3÷0/4 ÷0 ( )

4、找一找:课件出示信息:请帮小熊和小山羊找回大小相等的分数。

5、(1)把5/6和1/4都化成分母是12而大小不变的分数;

(2)把2/3和3/4都化成分子是6而大小不变的分数 6、2/5分子增加2,要使分数的大小不变,分母应该增加几?你是怎样想的?

四、拾捡硕果,拓展延伸。

1、看到同学们这么自信的回答,老师就知道今天大家的收获不少,谁来说说这节课你都收获了哪些东西?

(或用分数表示这节课的评价,快乐和遗憾各占多少?)

2、学了这节课,现在你知道阿凡提为什么会笑,如果你是阿凡提,你会对三兄弟说些什么?从这个故事中,你还知道了什么?师总结:看来学好数学还是很重要的!祝贺同学们都跟阿凡提一样聪明!(献上有节奏的掌声)

3、拓展延伸

师:最后,阿凡提为了考考同学们,他特意挑选了一道题,要同学们选择来完成,有信心去完成吗?

比一比:三杯同样多的牛奶,小明喝了其中一杯牛奶的2/3,小红喝了另一杯牛奶的5/6,小芳喝了最后一杯的9/12,三人谁喝得最多?谁喝得最少?

五、动脑筋退场

让学生拿出课前发的分数纸。要求学生看清手中的分数。与1/2相等的,报出自己的分数后站在教室的前面,与2/3相等的站在教室的后面,与3/4相等的站在教室的左边, 与4/5相等的站在教室的左边。

《分数基本性质》教学设计【第四篇】

教学目标

1. 让学生通过经历预测猜想——实验分析——合情推理——探究创造的过程,理解和掌握分数的基本性质,知道它与整数除法中商不变性质之间的联系。

2. 根据分数的基本性质,学会把一个分数化成用指定的分母做分母或指定的分子做分子而大小不变的分数,为学习约分和通分打下基础。

3. 培养学生观察、分析和抽象概括的能力,渗透事物是互相联系、发展变化的辩证唯物主义观点。体验到数学验证的思想,培养敢于质疑、学会分析的能力。

教学重点使学生理解分数的基本性质。

教学难点让学生自主探索,发现和归纳分数的基本性质,以及应用它解决相关的问题。

教学过程

一、故事情景引入

同学们,每年的中秋节你们都会吃什么呢?对了,月饼。中秋吃月饼是我们中国传统风俗。去年的中秋节,易老师的邻居李奶奶家里,发生了一件有趣的事情,大家想不想知道?

好,既然大家都这么好奇,就张开小耳朵认真听。去年的中秋节呀,李奶奶家的孙儿小红、小明、小兵都来了,家里可热闹了。李奶奶笑得合不拢嘴,她拿出一个又大又圆的月饼,对孙儿们说:“孩子们,奶奶给你们分月饼了。老大小红,奶奶分这块月饼的1/3给你,老二小明,奶奶分这块月饼的2/6给你,老三小兵,奶奶分这块月饼的3/9给你,(边讲边贴出名字和三个分数)你们同意吗?”奶奶的话刚讲完,小红就嘟着嘴叫了起来:“奶奶你不公平!分给小兵的多,分给我的少!”小明连忙叫着:“奶奶不公平,奶奶偏心!”只有小兵在偷着乐。

同学们,你们觉得奶奶公平吗?现在同桌之间讨论一下。

讨论完了请举手。

生甲:“我觉得不公平,小红分得多。”

生乙:“我觉得小明分得多。”

生丙:“我觉得公平,他们三个分得一样多。”

师:“看样子我们班的同学也争论起来了,到底李奶奶的月饼分得公不公平,上完这一节课同学们就会明白了。”

二、新授

师:“下面我们来做个实验。同学们请你们拿出老师为你们准备的学具袋,看看袋子里有些什么呢?(圆片)有几张?(三张)”

请你们把这三张圆片叠起来,比一比大小,看看怎么样?

生:“三张圆片一样大。”

1.师: “ 下面我们就用三张一样大的圆片代替月饼,象李奶奶一样来分月饼了。”

首先,请在第一张圆片上表示出它的1/3;

再在第二张圆片上表示出它的2/6;

然后在第三张圆片上表示出它的3/9。

好了,大家动手分一分。(教师巡视指导)

2. 师:“分完了的请举手?

老师跟你们一样,也准备了三张同样大小的圆片。(边说边操作,同样大)

下面请哪位同学说一说,你是怎么分的?”

生:“把第一个圆片平均分成三份,取其中的一份,就是它的三分之一。”

生:“把第二个圆片平均分成六份,取其中的两份,就是它的六分之二。”

师:“那九分之三又是怎么得到的呢?大家一起说。”

生:“把这块圆片平均分成九份,取其中的三份,就是它的九分之三。 ”

(学生说的同时,教师操作,分完后把圆片贴在黑板上。)

3. 师:“同学们,观察这些圆的阴影部分,你有什么发现?”

小结:原来三个圆的阴影部分是同样大的。

师:“ 现在再来评判一下,奶奶分月饼公平吗?为什么?”(请几名学生回答)

生:“奶奶分月饼是公平的,因为他们三个分得的月饼一样多。”

师:“现在我们的意见都统一了,奶奶是非常公平的,他们三个人分的月饼一样多。那你觉得1/3、2/6、3/9这三个分数的大小怎么样呢?”

生甲:“通过图上看起来,这三个分数应该是一样大的。”

生乙:“这三个分数是相等的。”

师:“刚才的试验证明,它们的大小是相等的。”(板书,打上等号)

4. 研究分数的基本规律。

师:“我们仔细观察这一组分数,它的什么变了,什么没变?”

生甲:“三个分数的分子分母都变了,大小没变。”

师:“那它的分子分母发生了怎样的变化呢?让我们从左往右看。

第一个分数从左往右看,跟第二个分数比,发生了什么变化?”

生乙:“它的分子分母都同时扩大了两倍。”

师:“跟第三个分数比,它又发生了什么变化?”(生回答)对了,它的分子分母都同时扩大了三倍。

再引导学生反过来看,让学生自己说出其中的规律。(边讲边板书)

教师小结:“刚才大家都观察得很仔细,这组分数的分子分母都不同,它们的大小却一样,那么,分子分母发生怎样变化的时候,它的大小不变呢?同桌之间互相说一说,总结一下,好吗?”

学生发言

小结:像分数的分子分母发生的这种有规律的变化,就是我们这节课学习的新知识。分数的基本性质。

5. 深入理解分数的基本性质。

师:“什么叫做分数的基本性质呢?就你的理解,用自己的语言说一说。”(学生讨论后发言)

师:刚才同学们都用自己的语言说了分数的基本性质,我们的书上也总结了分数的基本性质,现在请打开书看到108页。看看书上是怎么说的,是你说得好,还是书上说得好,为什么?

齐读分数的基本性质,并用波浪线表出关键的词。

生甲:我觉得“零除外”这个词很重要。

生乙:我觉得“同时”“相同”这两个词很重要。

师:想一想为什么要加上“零除外”?不加行不行?

让学生结合以前学过的商不变的性质讨论,为什么加“零除外”。

教师小结:“以三分之一这个分数为例,它的分子分母同时除以零,行吗?不行,除数为零没意义。所以零要除外。同时乘以零呢?我们就会发现,分子分母都为零了,而分数与除法的关系里,分母又相当于除数,这样的话,除数又为零了,无意义。所以一定要加上零除外。”(边讲边板书。)

三、应用

1.学了分数的基本性质到底又什么用呢?老师告诉你们,根据分数的基本性质,我们就能变魔术一样,把一个分数变成多个跟它大小一样,分子分母却不同的新分数。下面就让我们来变个魔术。

2.学生练习课本例题2,两名学生在黑板上做。

3.学生自己小结方法。

4.按规律写出一组相等的分数。

22 77764
");