高中物理会考知识点精彩4篇

网友 分享 时间:

【路引】由阿拉题库网美丽的网友为您整理分享的“高中物理会考知识点精彩4篇”文档资料,以供您学习参考之用,希望这篇范文对您有所帮助,喜欢就复制下载支持吧!

高二会考物理知识点【第一篇】

1、有一些元件它能够感受诸如力、温度、光、声、化学成分等非电学量,并能把它们按照一定的规律转换为电压、电流等电学量,或转换为电路的通断、我们把这种元件叫做传感器、它的优点是:把非电学量转换为电学量以后,就可以很方便地进行测量、传输、处理和控制了。

2、光敏电阻在光照射下电阻变化的原因:有些物质,例如硫化镉,是一种半导体材料,无光照时,载流子极少,导电性能不好;随着光照的增强,载流子增多,导电性变好、光照越强,光敏电阻阻值越小。

3、金属导体的电阻随温度的升高而增大,热敏电阻的阻值随温度的升高而减小,且阻值随温度变化非常明显、金属热电阻与热敏电阻都能够把温度这个热学量转换为电阻这个电学量,金属热电阻的化学稳定性好,测温范围大,但灵敏度较差。

高中物理会考知识点【第二篇】

1.光本性学说的发展简史

(1)牛顿的微粒说:认为光是高速粒子流。它能解释光的直进现象,光的反射现象。

(2)惠更斯的波动说:认为光是某种振动,以波的形式向周围传播。它能解释光的干涉和衍射现象。

2、光的干涉

光的干涉的条件是:有两个振动情况总是相同的波源,即相干波源。(相干波源的频率必须相同)。形成相干波源的方法有两种:⑴利用激光(因为激光发出的是单色性极好的光)。⑵设法将同一束光分为两束(这样两束光都来源于同一个光源,因此频率必然相等)。下面4个图分别是利用双缝、利用楔形薄膜、利用空气膜、利用平面镜形成相干光源的示意图。

2.干涉区域内产生的`亮、暗纹

⑴亮纹:屏上某点到双缝的光程差等于波长的整数倍,即δ=nλ(n=0,1,2,……)

⑵暗纹:屏上某点到双缝的光程差等于半波长的奇数倍,即δ=(n=0,1,2,……)

相邻亮纹(暗纹)间的距离。用此公式可以测定单色光的波长。用白光作双缝干涉实验时,由于白光内各种色光的波长不同,干涉条纹间距不同,所以屏的中央是白色亮纹,两边出现彩色条纹。

3.衍射----光通过很小的孔、缝或障碍物时,会在屏上出现明暗相间的条纹,且中央条纹很亮,越向边缘越暗。

⑴各种不同形状的障碍物都能使光发生衍射。

⑵发生明显衍射的条件是:障碍物(或孔)的尺寸可以跟波长相比,甚至比波长还小。(当障碍物或孔的尺寸小于时,有明显衍射现象。)

⑶在发生明显衍射的条件下当窄缝变窄时亮斑的范围变大条纹间距离变大,而亮度变暗。

4、光的偏振现象:通过偏振片的光波,在垂直于传播方向的平面上,只沿着一个特定的方向振动,称为偏振光。光的偏振说明光是横波。

5.光的电磁说

⑴光是电磁波(麦克斯韦预言、赫兹用实验证明了正确性。)

⑵电磁波谱。波长从大到小排列顺序为:无线电波、红外线、可见光、紫外线、X射线、γ射线。各种电磁波中,除可见光以外,相邻两个波段间都有重叠。

各种电磁波的产生机理分别是:无线电波是振荡电路中自由电子的周期性运动产生的;红外线、可见光、紫外线是原子的外层电子受到激发后产生的;伦琴射线是原子的内层电子受到激发后产生的;γ射线是原子核受到激发后产生的。

⑶红外线、紫外线、X射线的主要性质及其应用举例。

种类产生主要性质应用举例

红外线一切物体都能发出热效应遥感、遥控、加热

紫外线一切高温物体能发出化学效应荧光、杀菌、合成VD2

X射线阴极射线射到固体表面穿透能力强人体透视、金属探伤

高中物理会考知识点【第三篇】

一、波的干涉和衍射:

1、干涉:两列频率相同的波相互叠加,在某些地方振动加强,某些地方振动减弱,这种现象叫波的干涉;

(1)、发生干涉的条件:两列波的频率相同;

(2)、波峰与波峰重叠、波谷与波谷重叠振动加强;波峰与波谷重叠振动减弱;

(3)、振动加强的区域的振动位移并不是一致最大;

2、衍射:波绕过障碍物,传到障碍物后方的现象,叫波的衍射;(隔墙有耳)

能观察到明显衍射现象的条件是:障碍物或小孔的尺寸比波长小,或差不多;

3、衍射和干涉是波的特性,只有某物资具有这两种性质时,才能说该物资是波;

二、光的电磁说:

1、光是电磁波:

(1)、光在真空中的传播速度是/s;

(2)、光的传播不需要介质;

(3)光能发生衍射、干涉现象;

2、电磁波谱:无线电波、红外线、可见光、紫外线、伦琴射线、射线;

(1)从左向右,频率逐渐变大,波长逐渐减小;

(2)从左到右,衍射现象逐渐减弱;

(3)红外线:热效应强,可加热,一切物体都能发射红外线;

(4)、紫外线:有荧光效应、化学效应能,能辨比细小差别,消毒杀菌;

3、光的衍射:特例:萡松亮斑;

4、光的干涉:

(1)双缝(双孔)干涉:波长越长、双孔距离越小、光屏间距离越大,相邻亮条纹间的距离越大;

(2)薄膜干涉:特例:肥皂泡上的彩色条纹;检测工件的平整性,夏天油路上油滴成彩色;

三、光电效效应:在光的照射下,从物体向外发射出电子的现象叫光电效应,发射出的电子叫光电子;

1、现象:

(1)、任何金属都有一个极限频率,只有当入射光的频率大于极限频率时,才能发生光电效应;

(2)、光电子的最大初动能与入射光的强度无光,只随入射光的频率的增大而增大;

(3)入射光照射在金属上光电子的发射几乎是瞬时的,一般不超过10-9s

(4)当入射光的频率大于极限频率时,光电流的强度与入射光的强度成正比;

2、在空间传播的光是不连续的而是一份一份的,每一份叫做光子;光子的能量:E=h(光的频率越大光子的能量越大)

3、光电效应证明了光具有粒子性;

4、光具有波、粒二象性:光既具有波动性又具有粒子性;

四、激光具有:相干性(作为干涉光源);平行度好(作光盘、测量);亮度高(加热、光刀)

五、物质波:(自然界中的物质可分为:场和实物)

1、自然界中一切物体都有波动性;

2、物质波的波长:=h/p;

高二会考物理知识点【第四篇】

一、机械振动:物体在平衡位置附近所做的往复运动,叫机械振动。

1、平衡位置:机械振动的中心位置;

2、机械振动的位移:以平衡位置为起点振动物体所在位置为终点的有向线段;

3、回复力:使振动物体回到平衡位置的力;

(1)回复力的方向始终指向平衡位置;

(2)回复力不是一重特殊性质的力,而是物体所受外力的合力;

4、机械振动的特点:

(1)往复性;

(2)周期性;

二、简谐运动:物体所受回复力的大小与位移成正比,且方向始终指向平衡位置的运动;

(1)回复力的大小与位移成正比;

(2)回复力的方向与位移的方向相反;

(3)计算公式:F=—Kx;

如:音叉、摆钟、单摆、弹簧振子;

三、全振动:振动物体如:从0出发,经A,再到O,再到A/最后又回到0的周期性的过程叫全振动。

例1:从A至o,从o至A/,是一次全振动吗?

例2:振动物体从A/,出发,试说出它的一次全振动过程;

四、振幅:振动物体离开平衡位置的距离。

1、振幅用A表示;

2、回复力F大=KA;

3、物体完成一次全振动的路程为4A;

4、振幅是表示物体振动强弱的物理量;振幅越大,振动越强,能量越大;

五、周期:振动物体完成一次全振动所用的时间;

1、T=t/n (t表示所用的总时间,n表示完成全振动的次数)

2、振动物体从平衡位置到最远点,从最远点到平衡为置所用的时间相等,等于T/4;

六、频率:振动物体在单位时间内完成全振动的次数;

1、f=n/t;

2、f=1/T;

3、固有频率:由物体自身性质决定的频率;

七、简谐运动的图像:表示作简谐运动的物体位移和时间关系的图像。

1、若从平衡位置开始计时,其图像为正弦曲线;

2、若从最远点开始计时,其图像为余弦曲线;

3、简谐运动图像的作用:

(1)确定简谐运动的周期、频率、振幅;

(2)确定任一时刻振动物体的位移;

(3)比较不同时刻振动物体的速度、动能、势能的大小:离平衡位置跃进动能越大、速度越大,势能越小;

(4)判断某一时刻振动物体的运动方向:质点必然向相邻的后一时刻所在位置运动

4、作受迫振动的物体的振动频率等于驱动力的频率与其固有频率无关;物体发生共振的条件:物体的固有频率等于驱动力的频率;

八、单摆:用一轻质细绳一端固定一小球,另一端固定在悬点的装置。

1、当单摆的摆角很小(小于5度)时,所作的运动是简谐运动;

2、单摆的周期公式:T=2π(l/g)1/2

3、单摆在摆动过程中的能量关系:在平衡位置动能、重力势能最小;在最远点动能为零,重力势能;

九、机械波:机械振动在介质中的传播就形成了机械波。

1、产生机械波的条件:

(1)有波源;

(2)有介质;

2、机械波的实质:机械波只是机械振动这种运动形式的传播,介质本身不会沿播的传播方向移动;

3、波在传播时,各质点所作的运动形式:在波的传播过程中,各质点只在平衡位置两侧作往复运动,并不随波的前进而前移。

4、波的作用:

(1)传播能量;

(2)传播信息

23 448111
");