高一数学函数的知识点总结【热选4篇】

网友 分享 时间:

【路引】由阿拉题库网美丽的网友为您整理分享的“高一数学函数的知识点总结【热选4篇】”文档资料,以供您学习参考之用,希望这篇范文对您有所帮助,喜欢就复制下载支持吧!

函数的知识点总结:【第一篇】

一、函数的单调性

在(a,b)内可导函数f(x),f′(x)在(a,b)任意子区间内都不恒等于0.

f′(x)≥0f(x)在(a,b)上为增函数。

f′(x)≤0f(x)在(a,b)上为减函数。

二、函数的极值

1、函数的极小值:

函数y=f(x)在点x=a的函数值f(a)比它在点x=a附近其它点的函数值都小,f′(a)=0,而且在点x=a附近的左侧f′(x)<0,右侧f′(x)>0,则点a叫做函数y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值。

2、函数的极大值:

函数y=f(x)在点x=b的函数值f(b)比它在点x=b附近的其他点的函数值都大,f′(b)=0,而且在点x=b附近的左侧f′(x)>0,右侧f′(x)<0,则点b叫做函数y=f(x)的极大值点,f(b)叫做函数y=f(x)的。极大值。

极小值点,极大值点统称为极值点,极大值和极小值统称为极值。

三、函数的最值

1、在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值。

2、若函数f(x)在[a,b]上单调递增,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(x)在[a,b]上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值。

四、求可导函数单调区间的一般步骤和方法

1、确定函数f(x)的定义域;

2、求f′(x),令f′(x)=0,求出它在定义域内的一切实数根;

3、把函数f(x)的间断点(即f(x)的无定义点)的横坐标和上面的各实数根按由小到大的顺序排列起来,然后用这些点把函数f(x)的定义区间分成若干个小区间;

4、确定f′(x)在各个开区间内的符号,根据f′(x)的符号判定函数f(x)在每个相应小开区间内的增减性。

五、求函数极值的步骤

1、确定函数的定义域;

2、求方程f′(x)=0的根;

3、用方程f′(x)=0的根顺次将函数的定义域分成若干个小开区间,并形成表格;

4、由f′(x)=0根的两侧导数的符号来判断f′(x)在这个根处取极值的情况。

六、求函数f(x)在[a,b]上的最大值和最小值的步骤

1、求函数在(a,b)内的极值;

2、求函数在区间端点的函数值f(a),f(b);

3、将函数f(x)的各极值与f(a),f(b)比较,其中最大的一个为最大值,最小的一个为最小值。

特别提醒:

1、f′(x)>0与f(x)为增函数的关系:f′(x)>0能推出f(x)为增函数,但反之不一定。如函数f(x)=x3在(-∞,+∞)上单调递增,但f′(x)≥0,所以f′(x)>0是f(x)为增函数的充分不必要条件。

2、可导函数的极值点必须是导数为0的点,但导数为0的点不一定是极值点,即f′(x0)=0是可导函数f(x)在x=x0处取得极值的必要不充分条件。例如函数y=x3在x=0处有y′|x=0=0,但x=0不是极值点。此外,函数不可导的点也可能是函数的极值点。

3、可导函数的极值表示函数在一点附近的情况,是在局部对函数值的比较;函数的最值是表示函数在一个区间上的情况,是对函数在整个区间上的函数值的比较。

高中数学函数知识点总结【第二篇】

1、函数的奇偶性

(1)若f(x)是偶函数,那么f(x)=f(-x);

(2)若f(x)是奇函数,0在其定义域内,则f(0)=0(可用于求参数);

(3)判断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或(f(x)≠0);

(4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;

(5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;

2、复合函数的有关问题

(1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。

(2)复合函数的单调性由“同增异减”判定;

3、函数图像(或方程曲线的对称性)

(1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;

(2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然;

(3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0);

(4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0;

(5)若函数y=f(x)对x∈R时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称;

(6)函数y=f(x-a)与y=f(b-x)的图像关于直线x=对称;

4、函数的周期性

(1)y=f(x)对x∈R时,f(x+a)=f(x-a)或f(x-2a)=f(x)(a>0)恒成立,则y=f(x)是周期为2a的周期函数;

(2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2︱a︱的周期函数;

(3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4︱a︱的周期函数;

(4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2的周期函数;

(5)y=f(x)的图象关于直线x=a,x=b(a≠b)对称,则函数y=f(x)是周期为2的周期函数;

(6)y=f(x)对x∈R时,f(x+a)=-f(x)(或f(x+a)=,则y=f(x)是周期为2的周期函数;

5、方程k=f(x)有解k∈D(D为f(x)的值域);

≥f(x)恒成立a≥[f(x)]max,;a≤f(x)恒成立a≤[f(x)]min;

7、(1)(a>0,a≠1,b>0,n∈R+);(2)logaN=(a>0,a≠1,b>0,b≠1);

(3)logab的符号由口诀“同正异负”记忆;

(4)alogaN=N(a>0,a≠1,N>0);

8、判断对应是否为映射时,抓住两点:

(1)A中元素必须都有象且唯一;

(2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;

9、能熟练地用定义证明函数的单调性,求反函数,判断函数的奇偶性。

10、对于反函数,应掌握以下一些结论:

(1)定义域上的单调函数必有反函数;

(2)奇函数的反函数也是奇函数;

(3)定义域为非单元素集的偶函数不存在反函数;

(4)周期函数不存在反函数;

(5)互为反函数的两个函数具有相同的单调性;

(5)y=f(x)与y=f-1(x)互为反函数,设f(x)的定义域为A,值域为B,则有f[f--1(x)]=x(x∈B),f--1[f(x)]=x(x∈A)。

11、处理二次函数的问题勿忘数形结合;二次函数在闭区间上必有最值,求最值问题用“两看法”:一看开口方向;二看对称轴与所给区间的相对位置关系;

12、依据单调性,利用一次函数在区间上的保号性可解决求一类参数的范围问题

13、恒成立问题的处理方法:

(1)分离参数法;

(2)转化为一元二次方程的根的分布列不等式(组)求解;

高中数学函数知识点总结【第三篇】

十七世纪函数概念:

十七世纪伽俐略(,意,1564-1642)在《两门新科学》一书中,几乎全部包含函数或称为变量关系的这一概念,用文字和比例的语言表达函数的关系。1637年前后笛卡尔(Descartes,法,1596-1650)在他的解析几何中,已注意到一个变量对另一个变量的依赖关系,但因当时尚未意识到要提炼函数概念,因此直到17世纪后期牛顿、莱布尼兹建立微积分时还没有人明确函数的一般意义,大部分函数是被当作曲线来研究的。

1673年,莱布尼兹首次使用function(函数)表示幂,后来他用该词表示曲线上点的横坐标、纵坐标、切线长等曲线上点的有关几何量。与此同时,牛顿在微积分的讨论中,使用流量来表示变量间的关系。

十八世纪函数概念:

1718年约翰柏努利(JohannBernoulli,瑞士,1667-1748)在莱布尼兹函数概念的基础上对函数概念进行了定义:由任一变量和常数的任一形式所构成的量。他的意思是凡变量x和常量构成的式子都叫做x的函数,并强调函数要用公式来表示。1748年,柏努利的学生欧拉在《无穷分析引论》一书中说:一个变量的函数是由该变量的一些数或常量与任何一种方式构成的解析表达式。

1755,欧拉(,瑞士,1707-1783)把函数定义为如果某些变量,以某一种方式依赖于另一些变量,即当后面这些变量变化时,前面这些变量也随着变化,我们把前面的变量称为后面变量的函数。

18世纪中叶欧拉(,瑞士,1707-1783)给出了定义:一个变量的函数是由这个变量和一些数即常数以任何方式组成的解析表达式。他把约翰贝努利给出的函数定义称为解析函数,并进一步把它区分为代数函数和超越函数,还考虑了随意函数。不难看出,欧拉给出的函数定义比约翰贝努利的定义更普遍、更具有广泛意义。

十九世纪函数概念:

1821年,柯西(Cauchy,法,1789-1857)从定义变量起给出了定义:在某些变数间存在着一定的关系,当一经给定其中某一变数的值,其他变数的值可随着而确定时,则将最初的变数叫自变量,其他各变数叫做函数。在柯西的定义中,首先出现了自变量一词,同时指出对函数来说不一定要有解析表达式。不过他仍然认为函数关系可以用多个解析式来表示,这是一个很大的局限。

1822年傅里叶(Fourier,法国,17681830)发现某些函数也已用曲线表示,也可以用一个式子表示,或用多个式子表示,从而结束了函数概念是否以唯一一个式子表示的争论,把对函数的认识又推进了一个新层次。

1837年狄利克雷(Dirichlet,德国,1805-1859)突破了这一局限,认为怎样去建立x与y之间的关系无关紧要,他拓广了函数概念,指出:对于在某区间上的每一个确定的x值,y都有一个确定的值,那么y叫做x的函数。这个定义避免了函数定义中对依赖关系的描述,以清晰的方式被所有数学家接受。这就是人们常说的经典函数定义。

等到康托(Cantor,德国,1845-1918)创立的集合论在数学中占有重要地位之后,维布伦(Veblen,美,1880-1960)用集合和对应的概念给出了近代函数定义,通过集合概念把函数的对应关系、定义域及值域进一步具体化了,且打破了变量是数的极限,变量可以是数,也可以是其它对象。

现代函数概念:

1914年豪斯道夫()在《集合论纲要》中用不明确的概念序偶来定义函数,其避开了意义不明确的变量、对应概念。库拉托夫斯基(Kuratowski)于1921年用集合概念来定义序偶使豪斯道夫的定义很严谨了。

1930年新的现代函数定义为若对集合M的任意元素x,总有集合N确定的元素y与之对应,则称在集合M上定义一个函数,记为y=f(x)。元素x称为自变元,元素y称为因变元。

Excel中的函数使用方法【第四篇】

函数用法

1、函数名称:SUM

SUM是excel函数中最为常用的函数之一,sum函数分别出现在数学函数、全部函数两个类别中,默认的“常用函数”中也有。

sum函数的语法形式为: sum(number1,number2, 。.。)

例1、=sum(1,2,3) 结果为6,计算1、2、3三个数字的和;

例2、=sum(a1:a2) 结果为4,计算a1到a2单元格之和;

例3、=sum((1+2=3),(1+2),(a1:a2) 结果为8,因为(1+2=3)表达式的结果为真,在电脑中的结果为1,1+2表达式的结果3会被计算,a1到a2单元格之和4会被计算,所以最后的结果为8.

2、函数名称:AVERAGE

主要功能:求出所有参数的算术平均值。

使用格式:AVERAGE(number1,number2,……)

参数说明:number1,number2,……:需要求平均值的数值或引用单元格(区域),参数不超过30个。

应用举例:在B8单元格中输入公式:=AVERAGE(B7:D7,F7:H7,7,8),确认后,即可求出B7至D7区域、F7至H7区域中的数值和7、8的平均值。

实例:=AVERAGE(100,70) 返回结果: 85

3、函数名称:IF

主要功能:根据对指定条件的逻辑判断的真假结果,返回相对应的内容。

使用格式:=IF(Logical,Value_if_true,Value_if_false)

参数说明:Logical代表逻辑判断表达式;Value_if_true表示当判断条件为逻辑“真(TRUE)”时的显示内容,如果忽略返回“TRUE”;Value_if_false表示当判断条件为逻辑“假(FALSE)”时的显示内容,如果忽略返回“FALSE”。

4、函数名称:MAX

语法:MAX(number1,number2,。.。)

参数:Number1,number2,。.。最多可以设置30个参数,参数可以是数值、单元格引用、单元格区域引用、定义的名称或返回数值的函数表达式。

在引用的单元格中,如果是字符串或逻辑值TRUE、FALSE,不参与计算。而将字符串输入到参数列表中,将返回错误值#Value,直接输入的TRUE,按1计算,直接输入的FALSE按0计算。

实例1:如果A1=71、A2=83、A3=76、A4=49、A5=92、A6=88、A7=96,则公式“=MAX(A1:A7)”返回96。

实例2:课时计算,一个教学班不足60人的按60人计算,超过60人的,每超过1人,课时增加,公式为

=1+MAX(A1-60,0)*

5、函数名称:MIN

主要功能:求出一组数中的最小值。

使用格式:MIN(number1,number2……)

参数说明:number1,number2……代表需要求最小值的数值或引用单元格(区域),参数不超过30个。

应用举例:输入公式:=MIN(E44:J44,7,8,9,10),确认后即可显示出E44至J44单元和区域和数值7,8,9,10中的最小值。

6、EXCEL函数大全

数据库和清单管理函数

AVERAGE 返回选定数据库项的平均值

COUNT 计算数据库中包含数字的单元格的个数

COUNTA计算数据库中非空单元格的个数

DGET 从数据库中提取满足指定条件的单个记录

MAX 返回选定数据库项中的最大值

MIN 返回选定数据库项中的最小值

PRODUCT 乘以特定字段(此字段中的记录为数据库中满足指定条件的记录)中的值

STDEV 根据数据库中选定项的示例估算标准偏差

STDEVP 根据数据库中选定项的样本总体计算标准偏差

SUM 对数据库中满足条件的记录的字段列中的数字求和

VAR 根据数据库中选定项的示例估算方差

VARP 根据数据库中选定项的样本总体计算方差

GETPIVOTDATA 返回存储在数据透视表中的数据

日期和时间函数

DATE 返回特定时间的系列数

DATEDIF 计算两个日期之间的年、月、日数

DATEVALUE 将文本格式的日期转换为系列数

DAY 将系列数转换为月份中的日

DAYS360 按每年360天计算两个日期之间的天数

EDATE 返回在开始日期之前或之后指定月数的某个日期的系列数

EOMONTH 返回指定月份数之前或之后某月的最后一天的系列数

HOUR 将系列数转换为小时

MINUTE 将系列数转换为分钟

MONTH 将系列数转换为月

NETWORKDAYS 返回两个日期之间的完整工作日数

NOW 返回当前日期和时间的系列数

SECOND 将系列数转换为秒

TIME 返回特定时间的系列数

TIMEVALUE 将文本格式的时间转换为系列数

TODAY 返回当天日期的系列数

WEEKDAY 将系列数转换为星期

WORKDAY 返回指定工作日数之前或之后某日期的系列数

YEAR 将系列数转换为年

YEARFRAC 返回代表START_DATE(开始日期)和END_DATE(结束日期)之间天数的以年为单位的分数

DDE 和外部函数

CALL 调用动态链接库(DLL)或代码源中的过程

REGISTER. ID 返回已注册的指定DLL或代码源的注册ID

连接外部数据源,并从工作表中运行查询,然后将结果作为数组返回,而无需进行宏编程。

工程函数

BESSELI返回经过修改的贝塞尔函数IN(X)

BESSELJ 返回贝塞尔函数JN(X)

BESSELK返回经过修改的贝塞尔函数KN(X)

BESSELY返回贝塞尔函数YN(X)

XLFCTBIN2DEC、BIN2DEC 将二进制数转换为十进制数

BIN2HEX 将二进制数转换为十六进制数

BIN2OCT将二进制数转换为八进制数

COMPLEX 将实系数和虚系数转换为复数

CONVERT 将一种度量单位制中的数字转换为另一种度量单位制

DEC2BIN 将十进制数转换为二进制数

DEC2HEX 将十进制数转换为十六进制数

DEC2OCT 将十进制数转换为八进制数

DELTA 检测两个值是否相等

ERF 返回误差函数

ERFC 返回余误差函数

GESTEP 检测数字是否大于某个阈值

HEX2BIN 将十六进制数转换为二进制数

HEX2DEC 将十六进制数转换为十进制数

HEX2OCT 将十六进制数转换为八进制数

IMABS 返回复数的绝对值(模)

IMAGINARY 返回复数的虚系数

IMARGUMENT 返回参数THETA,一个以弧度表示的角

IMCONJUGATE 返回复数的共轭复数

IMCOS 返回复数的余弦

IMDIV 返回两个复数的商

IMEXP 返回复数的指数

IMLN 返回复数的自然对数

IMLOG10 返回复数的常用对数

IMLOG2 返回复数的以2为底数的对数

IMPOWER 返回复数的整数幂

IMPRODUCT 返回两个复数的乘积

IMREAL 返回复数的实系数

IMSIN 返回复数的正弦

IMSQRT 返回复数的平方根

IMSUB 返回两个复数的差

IMSUM 返回两个复数的和

OCT2BIN 将八进制数转换为二进制数

OCT2DEC 将八进制数转换为十进制数

OCT2HEX 将八进制数转换为十六进制数

财务函数

ACCRINT 返回定期付息有价证券的应计利息

ACCRINTM 返回到期一次性付息有价证券的应计利息

AMORDEGRC 返回每个会计期间的折旧值

AMORLINC 返回每个会计期间的折旧值

COUPDAYBS 返回当前付息期内截止到成交日的天数

COUPDAYS 返回成交日所在的付息期的天数

COUPDAYSNC 返回从成交日到下一付息日之间的天数

COUPNCD 返回成交日过后的下一付息日的日期

COUPNUM 返回成交日和到期日之间的利息应付次数

COUPPCD 返回成交日之前的上一付息日的日期

CUMIPMT 返回两个期间之间累计偿还的利息数额

CUMPRINC 返回两个期间之间累计偿还的本金数额

DB 使用固定余额递减法,返回一笔资产在指定期间内的折旧值

DDB 使用双倍余额递减法或其他指定方法,返回一笔资产在指定期间内的折旧值

DISC 返回有价证券的贴现率

DOLLARDE 将按分数表示的价格转换为按小数表示的价格

DOLLARFR 将按小数表示的价格转换为按分数表示的价格

DURATION 返回定期付息有价证券的修正期限

EFFECT 返回实际年利率

FV 返回投资的未来值

FVSCHEDULE 基于一系列复利返回本金的未来值

INTRATE 返回一次性付息证券的利率

IPMT 返回给定期间内投资的利息偿还额

IRR 返回一组现金流的内部收益率

ISPMT 计算在投资的特定期间内支付的利息

MDURATION 返回假设面值0的有价证券的MACAULEY修正期限

MIRR 返回正负现金流使用不同利率的修正内部收益率

NOMINAL 返回名义年利率

NPER 返回投资的期数

NPV 基于一系列现金流和固定的各期贴现率,返回一项投资的净现值

ODDFPRICE 返回首期付息日不固定的面值0的有价证券的价格

ODDFYIELD 返回首期付息日不固定的有价证券的收益率

ODDLPRICE 返回末期付息日不固定的面值0的有价证券的价格

ODDLYIELD 返回末期付息日不固定的有价证券的收益率

PMT 返回投资或贷款的每期付款额

PPMT 返回投资在某一给定期次内的本金偿还额

PRICE 返回定期付息的面值0的有价证券的价格

PRICEDISC 返回折价发行的面值0的有价证券的价格

PRICEMAT 返回到期付息的面值0的有价证券的价格

PV 返回投资的现值

RATE 返回年金的各期利率

RECEIVED 返回一次性付息的有价证券到期收回的金额

SLN返回一项资产每期的直线折旧费

SYD 返回某项资产按年限总和折旧法计算的某期的折旧值

TBILLEQ 返回国库券的债券等效收益率

TBILLPRICE 返回面值0的国库券的价格

TBILLYIELD 返回国库券的收益率

VDB 使用递减余额法,返回指定期间内或某一时间段内的资产折旧额

XIRR 返回一组不定期发生的现金流的内部收益率

XNPV 返回一组不定期发生的现金流的净现值

YIELD 返回定期付息有价证券的收益率

YIELDDISC 返回折价发行的有价证券的年收益率,例如:国库券

YIELDMAT 返回到期付息的有价证券的年收益率

信息函数

CELL 返回有关单元格格式、位置或内容的信息

COUNTBLANK 计算区域中空单元格的个数

返回对应于错误类型的数字

INFO 返回有关当前操作环境的信息

ISBLANK 如果值为空,则返回TRUE。

ISERR 如果值为除#N/A以外的错误值,则返回TRUE。

ISERROR 如果值为任何错误值,则返回TRUE。

ISEVEN 如果数为偶数,则返回TRUE。

ISLOGICAL 如果值为逻辑值,则返回TRUE。

ISNA 如果值为 #N/A错误值,则返回TRUE。

ISNONTEXT 如果值不是文本,则返回TRUE。

ISNUMBER 如果值为数字,则返回TRUE。

ISODD 如果数字为奇数,则返回TRUE。

ISREF 如果值为引用,则返回TRUE。

ISTEXT 如果值为文本,则返回TRUE。

N 返回转换为数字的值

NA 返回错误值#N/A

XLFCTTYPE TYPE 返回表示值的数据类型的数字

逻辑函数

AND 如果所有参数为TRUE,则返回TRUE

FALSE 返回逻辑值FALSE

IF 指定要执行的逻辑检测

NOT 反转参数的逻辑值

OR 如果任何参数为TRUE,则返回TRUE

TRUE 返回逻辑值TRUE

查找和引用函数

ADDRESS 以文本形式返回对工作表中单个单元格的引用

AREAS 返回引用中的区域数

CHOOSE 从值的列表中选择一个值

COLUMN 返回引用的列号

COLUMNS 返回引用中的列数

HLOOKUP 查找数组的顶行并返回指示单元格的值

HYPERLINK 创建快捷方式或跳转,打开存储在网络服务器、企业内部网或INTERNET上的文档

INDEX 使用索引从引用或数组中选择值

INDIRECT 返回由文本值表示的引用

LOOKUP 在向量或数组中查找值

MATCH 在引用或数组中查找值

OFFSET 从给定引用中返回引用偏移量

ROW 返回引用的行号

ROWS 返回引用中的行数

TRANSPOSE 返回数组的转置

VLOOKUP 查找数组的第一列并移过行,然后返回单元格的值

数学和三角函数

ABS 返回数的绝对值

ACOS 返回数的反余弦

ACOSH 返回数的反双曲余弦值

ASIN 返回数的反正弦

ASINH 返回数的反双曲正弦值

ATAN 返回数的反正切

ATAN2 从X和Y坐标返回反正切

ATANH 返回参数的反双曲正切值

CEILING 对数字取整为最接近的整数或最接近的多个有效数字

COMBIN 返回给定数目对象的组合数

COS 返回数的余弦

COSH 返回数的双曲线余弦

COUNTIF计算符合给定条件的区域中的非空单元格数

DEGREES 将弧度转换为度

EVEN 将数向上取整至最接近的偶数整数

EXP 返回E的指定数乘幂

FACT 返回数的阶乘

FACTDOUBLE 返回参数NUMBER的半阶乘

FLOOR 将参数NUMBER沿绝对值减小的方向取整

GCD 返回最大公约数

INT 将数向下取整至最接近的整数

LCM 返回最小公倍数

LN 返回数的自然对数

LOG 返回数的指定底数的对数

LOG10 返回以10为底的对数

MDETERM 返回数组的矩阵行列式

MINVERSE 返回数组的反矩阵

MMULT 返回两个数组的矩阵乘积

MOD 返回两数相除的余数

MROUND 返回参数按指定基数取整后的数值

MULTINOMIAL 返回一组数的多项式

ODD 将数取整至最接近的奇数整数

PI 返回PI值

POWER 返回数的乘幂结果

PRODUCT 将所有以参数形式给出的数字相乘

QUOTIENT 返回商的整数部分

RADIANS 将度转换为弧度

RAND 返回0和1之间的随机数

RANDBETWEEN 返回指定数之间的随机数

ROMAN 将阿拉伯数字转换为文本形式的罗马数字

ROUND 将数取整至指定数

ROUNDDOWN 将数向下*近0值取整

ROUNDUP 将数向上远离0值取整

SERIESSUM 返回基于公式的幂级数的和

SIGN 返回数的正负号

SIN 返回给定角度的正弦

SINH 返回数的双曲正弦值

SQRT 返回正平方根

SQRTPI 返回某数与PI的乘积的平方根

SUBTOTAL 返回清单或数据库中的分类汇总

SUM 添加参数

SUMIF 按给定条件添加指定单元格

SUMPRODUCT 返回相对应的数组部分的乘积和

SUMSQ 返回参数的平方和

SUMX2MY2 返回两个数组中相对应值的平方差之和

SUMX2PY2 返回两个数组中相对应值的平方和之和

SUMXMY2 返回两个数组中相对应值差的平方之和

TAN 返回数的正切

TANH 返回数的双曲正切值

TRUNC 将数截尾为整数

统计函数

AVEDEV 返回一组数据与其均值的绝对偏差的平均值

AVERAGE 返回参数的平均值

AVERAGEA 返回参数的平均值,包括数字、文本和逻辑值

BETADIST 返回BETA分布累积函数的函数值

BETAINV 返回BETA分布累积函数的反函数值

BINOMDIST 返回单独项二项式分布概率

CHIDIST 返回CHI平方分布的单尾概率

CHIINV 返回CHI平方分布的反单尾概率

CHITEST 返回独立性检验值

CONFIDENCE 返回总体平均值的置信区间

CORREL 返回两个数据集之间的相关系数

COUNT 计算上列数据中包含数字的单元格的个数

COUNTA计算参数列表中的值多少

COVAR 返回协方差,即成对偏移乘积的平均数

CRITBINOM 返回使累积二项式分布小于等于临界值的最小值

DEVSQ 返回偏差的平方和

EXPONDIST 返回指数分布

FDIST 返回F概率分布

FINV 返回反F概率分布

FISHER 返回FISHER变换

FISHERINV 返回反FISHER变换

FORECAST 根据给定的数据计算或预测未来值

FREQUENCY 返回作为矢量数组的频率分布

FTEST 返回 F 检验的结果

GAMMADIST 返回伽玛分布

GAMMAINV 返回反伽玛累积分布

GAMMALN 返回伽玛函数的自然对数,Γ(X)

GEOMEAN 返回几何平均数

GROWTH 根据给定的数据预测指数增长值

HARMEAN 返回数据集合的调和平均值

HYPGEOMDIST 返回超几何分布

INTERCEPT 返回回归线截距

KURT 返回数据集的峰值

LARGE 返回数据集中第K个最大值

LINEST 返回线条趋势的参数

LOGEST 返回指数趋势的参数

LOGINV 返回反对数正态分布

LOGNORMDIST 返回对数正态分布的累积函数

MAX 返回参数列表中的最大值

MAXA 返回参数列表中的最大值,包括数字、文本和逻辑值

MEDIAN 返回给定数字的中位数

MIN 返回参数列表的最小值

MINA 返回参数列表中的最小值,包括数字、文本和逻辑值

MODE 返回数据集中的出现最多的值

NEGBINOMDIST 返回负二项式分布

NORMDIST 返回普通累积分布

NORMINV 返回反普通累积分布

NORMSDIST 返回标准普通累积分布

NORMSINV 返回反标准普通累积分布

PEARSON 返回PEARSON乘积矩相关系数

PERCENTILE 返回区域中值的第K个百分比

PERCENTRANK 返回数据集中值的百分比排位

PERMUT 返回对象给定数的排列数

POISSON 返回泊松分布

PROB 返回区域中的值在两个限制之间的概率

QUARTILE 返回数据集的四分位数

RANK 返回某数在数字列表中的排位

RSQ 返回PEARSON乘积力矩相关系数的平方

SKEW 返回分布的偏斜度

SLOPE 返回线性回归直线的斜率

SMALL 返回数据集中的第K个最小值

STANDARDIZE 返回正态化数值

STDEV 估计样本的标准偏差

STDEVA 估计样本的标准偏差,包括数字、文本和逻辑值

STDEVP 计算整个样本总体的标准偏差

STDEVPA 计算整个样本总体的标准偏差,包括数字、文本和逻辑值

STEYX 返回通过线性回归法计算Y预测值时所产生的标准误差

TDIST 返回学生氏-T分布

TINV 返回反学生氏-T分布

TREND 返回沿线性趋势的值

TRIMMEAN 返回数据集的内部平均值

TTEST 返回与学生氏- T检验相关的概率

VAR 估计样本的方差

VARA 估计样本的方差,包括数字、文本和逻辑值

VARP 计算整个样本总体的方差

VARPA 计算整个样本总体的方差,包括数字、文本和逻辑值

WEIBULL 返回韦伯分布

ZTEST 返回Z检验的双尾P值

文本函数

ASC 将字符串中的全角(双字节)英文字母或片假名更改为半角(单字节)字符。

CHAR 返回由编码号码所指定的字符

CLEAN 删除文本中的所有不可打印字符

CODE 返回文本串中第一个字符的数字编码

CONCATENATE 将多个文本项连接到一个文本项中

DOLLAR 使用当前格式将数字转换为文本

EXACT 检查两个文本值是否相同

FIND 在其他文本值中查找文本值(区分大小写)

FIXED 使用固定的十进制数将数字设置为文本格式

JIS 将字符串中的半角(单字节)英文字符或片假名更改为全角(双字节)字符。

LEFT 返回文本值中最左边的字符

LEN 返回文本串中字符的个数

LOWER 将文本转换为小写

MID 从文本串中的指定位置开始返回特定数目的字符

PHONETIC 从文本串中提取拼音(FURIGANA)字符

PROPER 将文本值中每个单词的首字母设置为大写

REPLACE 替换文本中的字符

REPT 按给定次数重复文本

RIGHT 返回文本值中最右边的字符

SEARCH 在其他文本值中查找文本值(不区分大小写)

SUBSTITUTE 在文本串中使用新文本替换旧文本

T 将参数转换为文本

TEXT 设置数字的格式并将其转换为文本

TRIM 删除文本中的空格

UPPER 将文本转换为大写

VALUE 将文本参数转换为数字

YEN 使用¥(YEN)货币符号将数字转换为文本。

猜你喜欢:

23 96596
");