高一数学函数知识总结(精选4篇)

网友 分享 时间:

【阅读指引】阿拉题库网友为您分享整理的“高一数学函数知识总结(精选4篇)”范文资料,以供您参考学习之用,希望这篇文档对您有所帮助,喜欢就下载分享给大家吧!

高一函数知识点总结【第一篇】

高一函数知识点总结

函数先看他的树枝图,第一个点要了解函数定义讲完,讲解函数三要素(定义域、解析式、值域)

接下来讲解函数四性质(单调性、奇偶性、周期性、对称性)

接下来讲解函数类型主要讲解二次函数、指数、对数、幂函数、反函数这些内容讲完后,这个就是函数基础内容。

函数基础内容讲完后,准备了函数专题一:讲解函数零点问题分为了四个题型格外重要,一出题就是高考压轴题

那么第二个专题讲到恒成立问题

第三个专题总结一下函数压轴小题不能常规做,如果常规做,极有可能时间浪费掉正确答案也做不出来,有技巧的,有三个技巧方法非常高效。

第一种题型:三次函数的单调性、极值、最值及其应用,其实这个点,我们在六类不等式提到过。

第二种题型:差异取值验证法在解决函数选择难题中的妙用,全国卷做完百分之八十压轴选择题,除了一点函数题之外,其他章节题目也能用这个思想去做,同学可能或多或少有了解,带着大家把这种方法彻底让你掌握,高效去做压轴选择题

第三种题型:已知函数不等式求解抽象不等式这种题型是构造函数这些内容全部讲完相信你对函数这章体系特别完整,那么后续学习其他章节就不会因为函数这章没有学好而影响后面的学习。

那么开始进入第一个点函数三要素,一个点定义域,给大家讲解三个点

已知解析式型

已知解析式型(四个类型)

根据四个类型讲解例题:

抽象函数型

例题1、已知f(x)的定义域为[3,5],求f(2x-1)的定义域。(解题过程答案如图)

例题2、已知f(2x-1)的定义域为[3,5],求f(x)的定义域

例题3、已知f(2x-1)的定义域为[3,5]求f(4x-1)的定义域

已知定义域求参数范围:

高一数学:如何适应,如何学好?

进入高一以后,数学的深度开始增大,但是,我们都知道,数学是一个多么重要的学科,因此,这个崭新的阶段开始,一定要重视数学的学习。那么,在高一时期,如何尽快适应新内容,掌握新知识呢?

对此,高一的新同学,可以多向学长学姐请教,也可以多咨询老师,当然了,一切都只是引路人,最终还是要靠自己提高悟性,努力学习。

一名高中生,要有最科学的学习方法,才能事半功倍。比如,在数学学习当中,高一同学要能够学会检查和分析,要掌握自己学习的进度,还要愿意动脑思考,愿意积极投入到数学学习中去。如果能够做到以下3点,高一的同学一定能够规避错误,提高数学成绩。

第1点:正确了解高中数学的特点。

高中数学与初中数学是完全不同的两个概念,最大的区别就是,高中数学更加抽象了。读过高中的同学都清楚,像集合、映射等概念,十分难以理解,而且离生活很远, 不像小学和初中的数学那样“接地气”。还有,初中和高中的数学语言,也是有明显区别的。初中的数学,它是形象、通俗的。而高一数学,却变化了,它一下子就触及到了抽象的集合语言、逻辑运算语言、函数语言、空间立体几何等。对于刚刚升入高中的同学来说,显然很难以接受这种改变。那么,进入高中以后,同学们一定要注意到这种变化,要能接受并适应这种变化,如此,才能学好数学哦。

第2点:改变不好的学习习惯。

很多高一的学生,没有良好的学习习惯,比如,依靠心理很严重,不少同学,根本不愿意发散思维,他只凭借课堂上老师讲的内容,来完成练习题,殊不知,只会照猫画虎的话,根本不能深入到学习当中去。还有,一些同学进入高中了,却还把自己当成小学生,根本不愿意提前预习,或者参与到老师的提问当中,只愿意呆坐着等老师灌输,这样被动的学习,根本学不到真东西。

还有,一部分同学在进入高中后,思想上并没有做好准备,而是十分懒怠,觉得高一不用着急,高三时再用心苦读就可以了,其实呀,这种思想是完全错误的!高中阶段的数学这样难,只能一步一个脚印踏踏实实学,你丢弃了高一、高二的黄金时期,高三再苦读,也是赶不上去的!

第3点,要学会科学地分配学习时间,会用巧劲。

学习要得法才行,大部分学霸,是非常注重课堂听讲的,毕竟,老师们在上课之前,一定会提前备课,也会反复讲解本节课当中的重难点知识,此时,一定要积极跟着老师的思维走,不能想别的东西分散注意力,课堂上,老师所讲的概念呀法则呀公式呀定理呀,都是十分重要的,一定要吃透了,听进到头脑当中,切莫上课不听下课问,或者作业照抄了事,这都是对自己不负责任的表现!

还有,学习当中,一定要注重基础,数学是最重视基础知识的,由易到难,循序渐进,而且呢,学习当中,也不能只顾刷题,却不管算理。学习数学,要注意提升自己的深度和广度,一定要正确掌握数学分析方法,像是在学习函数值的求法,实根分布与参数变量的讨论,三角公式的变形与灵活运用,空间概念的形成,排列组合应用题及实际应用问题等之时,高一学生一定要做好数学内容的衔接,还要及时地查漏补缺才行,切莫让知识点出现断痕!

综合以上几点,高一生在学习数学时,一定要方法得当,才能真正把数学这个拦路虎给解决了。试想一下,如果同学你能在高考当中数学考140分以上,是不是很给力呢?

函数的单调性【第二篇】

1、函数单调性的定义:

2 设 是定义在M上的函数,若f(x)与g(x)的单调性相反,则 在M上是减函数;若f(x)与g(x)的单调性相同,则 在M上是增函数。

高一函数知识点总结【第三篇】

1、函数:设A、B为非空集合,如果按照某个特定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数,写作y=f(x),x∈A,其中,x叫做自变量,x的取值范围A叫做函数的定义域,与x相对应的y的值叫做函数值,函数值的集合B={f(x)∣x∈A }叫做函数的值域。

2、函数定义域的解题思路:

⑴ 若x处于分母位置,则分母x不能为0。

⑵ 偶次方根的被开方数不小于0。

⑶ 对数式的真数必须大于0。

⑷ 指数对数式的底,不得为1,且必须大于0。

⑸ 指数为0时,底数不得为0。

⑹ 如果函数是由一些基本函数通过四则运算结合而成的,那么,它的定义域是各个部分都有意义的x值组成的集合。

⑺ 实际问题中的函数的定义域还要保证实际问题有意义。

3、相同函数

⑴ 表达式相同:与表示自变量和函数值的字母无关。

⑵ 定义域一致,对应法则一致。

4、函数值域的求法

⑴ 观察法:适用于初等函数及一些简单的由初等函数通过四则运算得到的函数。

⑵ 图像法:适用于易于画出函数图像的函数已经分段函数。

⑶ 配方法:主要用于二次函数,配方成 y=(x-a)2+b 的形式。

⑷ 代换法:主要用于由已知值域的函数推测未知函数的值域。

5、函数图像的变换

⑴平移变换:在x轴上的变换在x上就行加减,在y轴上的变换在y上进行加减。

⑵ 伸缩变换:在x前加上系数。

⑶ 对称变换:高中阶段不作要求。

6、映射:设A、B是两个非空集合,如果按某一个确定的对应法则f,使对于A中的任意仪的元素x,在集合B中都有唯一的确定的y与之对应,那么就称对应f:A→B为从集合A到集合B的映射。

⑴ 集合A中的每一个元素,在集合B中都有象,并且象是唯一的。

⑵ 集合A中的不同元素,在集合B中对应的象可以是同一个。

⑶ 不要求集合B中的每一个元素在集合A中都有原象。

7、分段函数

⑴ 在定义域的不同部分上有不同的解析式表达式。

⑵ 各部分自变量和函数值的取值范围不同。

⑶ 分段函数的定义域是各段定义域的交集,值域是各段值域的并集。

8、复合函数:如果(u∈M),u=g(x) (x∈A),则,y=f[g(x)]=F(x) (x∈A),称为f、g的复合函数。

函数的解析式与定义域【第四篇】

1、求函数定义域的主要依据:

(1)分式的分母不为零;

(2)偶次方根的被开方数不小于零,零取零次方没有意义;

(3)对数函数的真数必须大于零;

(4)指数函数和对数函数的底数必须大于零且不等于1;

35 463874
");