中考数学知识点总结【汇集5篇】

网友 分享 时间:

【导言】此例“中考数学知识点总结【汇集5篇】”的文档资料由阿拉题库网友为您分享整理,以供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载支持吧!

中考数学知识点总结【第一篇】

一、三角形的有关概念

1.三角形:由不在同一直线上的三条线段首尾顺次相接组成的图形叫三角形。

三角形的特征:①不在同一直线上;②三条线段;③首尾顺次相接;④三角形具有稳定性。

2.三角形中的三条重要线段:角平分线、中线、高

(1)角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。

(2)中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。

(3)高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。

说明:①三角形的角平分线、中线、高都是线段;②三角形的角平分线、中线都在三角形内部且都交于一点;三角形的高可能在三角形的内部(锐角三角形)、外部(钝角三角形),也可能在边上(直角三角形),它们(或延长线)相交于一点。

二、等腰三角形的性质和判定

(1)性质

1.等腰三角形的两个底角相等(简写成"等边对等角")。

2.等腰三角形的顶角的平分线,底边上的中线,底边上的高重合(简写成"等腰三角形的三线合一")。

3.等腰三角形的两底角的平分线相等(两条腰上的中线相等,两条腰上的高相等)。

4.等腰三角形底边上的垂直平分线到两条腰的距离相等。

5.等腰三角形的一腰上的高与底边的夹角等于顶角的一半。

6.等腰三角形底边上任意一点到两腰距离之和等于一腰上的高(需用等面积法证明)。

7.等腰三角形是轴对称图形,只有一条对称轴,顶角平分线所在的直线是它的对称轴,等边三角形有三条对称轴。

(2)判定

在同一三角形中,有两条边相等的三角形是等腰三角形(定义)。

在同一三角形中,有两个角相等的三角形是等腰三角形(简称:等角对等边)。

三、直角三角形和勾股定理

有一个角是直角的三角形是直角三角形,在直角三角形中,斜边中线等于斜边的一半;30度所对的直角边等于斜边的一半;直角三角形常用面积法求斜边上的高。

勾股定理:直角三角形两直角边a,b的平方和等于斜边c的平方,即a2+b2=c2。

勾股数一定是正整数,常见勾股数:3,4,5;5,12,13;6,8,10,;7,24,25;8,15,17;9,12,15。

方法总结:

当不明确直角三角形的斜边长,应把已知最长边分为直角边和斜边两种情况讨论。无理数在数轴上的表示和线段长表示通常用到勾股定理。翻折题型常用勾股定理(口诀:翻折求边找直角,勾股定理设未知量)

如果三角形的三边长a,b,c有关系a2+b2=c2,那么这个三角形是直角三角形。勾股定理的逆定理,常用于判断三角形的形状,先确定最大边(可以设为c)。

四、初中三角形中线定理

中线定理又称阿波罗尼奥斯定理,是欧氏几何的定理,表述三角形三边和中线长度关系。

定理内容:三角形一条中线两侧所对边平方和等于底边的一半平方与该边中线平方和的2倍。

中线的定义:任何三角形都有三条中线,而且这三条中线都在三角形的内部,并交于一点。

由定义可知,三角形的中线是一条线段。

由于三角形有三条边,所以一个三角形有三条中线。

且三条中线交于一点。这点称为三角形的重心。

每条三角形中线分得的两个三角形面积相等。

五、直角三角形的判定

判定1:有一个角为90°的三角形是直角三角形。

判定2:若a的平方+b的平方=c的平方,则以a、b、c为边的三角形是以c为斜边的直角三角形(勾股定理的逆定理)。

判定3:若一个三角形30°内角所对的边是某一边的一半,那么这个三角形是以这条长边为斜边的直角三角形。

判定4:两个锐角互余的三角形是直角三角形。

判定5:证明直角三角形全等时可以利用HL,两个三角形的斜边长对应相等,以及一个直角边对应相等,则两直角三角形全等。[定理:斜边和一条直角对应相等的两个直角三角形全等。简称为HL]

判定6:若两直线相交且它们的斜率之积互为负倒数,则这两直线垂直。

判定7:在一个三角形中若它一边上的中线等于这条中线所在边的一半,那么这个三角形为直角三角形。

六、勾股定理的逆定理

如果三角形三边长a,b,c满足,那么这个三角形是直角三角形,其中c为斜边。

①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和与较长边的平方作比较,若它们相等时,以a,b,c为三边的三角形是直角三角形;若时,以a,b,c为三边的三角形是钝角三角形;若时,以a,b,c为三边的三角形是锐角三角形;

②定理中a,b,c及只是一种表现形式,不可认为是唯一的,如若三角形三边长a,b,c满足,那么以a,b,c为三边的三角形是直角三角形,但是b为斜边。

③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形。

七、三角形定理公式

三角形的三边关系定理及推论:三角形的两边之和大于第三边,两边之差小于第三边。

三角形的内角和定理:三角形的三个内角的和等于180度。

三角形的外角和定理:三角形的一个外角等于和它不相邻的两个的和。

三角形的外角和定理推理:三角形的一个外角大于任何一个和它不相邻的内角。

三角形的三条角平分线交于一点(内心)。

三角形的三边的垂直平分线交于一点(外心)。

三角形中位线定理:三角形两边中点的连线平行于第三边,并且等于第三边的一半。

中考数学知识点总结【第二篇】

(1)凡能写成形式的数,都是有理数。正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数。注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数;

(2)有理数的分类:①整数②分数

(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的。数也有自己的特性;

(4)自然数0和正整数;a0a是正数;a0a是负数;

a≥0a是正数或0a是非负数;a≤0?a是负数或0a是非正数。

中考数学知识点总结【第三篇】

直角三角形的判定方法:

判定1:定义,有一个角为90°的三角形是直角三角形。

判定2:判定定理:以a、b、c为边的三角形是以c为斜边的直角三角形。如果三角形的三边a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形。(勾股定理的逆定理)。

判定3:若一个三角形30°内角所对的边是某一边的一半,则这个三角形是以这条长边为斜边的直角三角形。

判定4:两个锐角互为余角(两角相加等于90°)的三角形是直角三角形。

判定5:若两直线相交且它们的斜率之积互为负倒数,则两直线互相垂直。那么

判定6:若在一个三角形中一边上的中线等于其所在边的一半,那么这个三角形为直角三角形。

判定7:一个三角形30°角所对的边等于这个三角形斜边的一半,则这个三角形为直角三角形。(与判定3不同,此定理用于已知斜边的三角形。)

三角形的。外心定义:

外心:是三角形三条边的垂直平分线的交点,即外接圆的圆心。

外心定理:三角形的三边的垂直平分线交于一点。该点叫做三角形的外心。

三角形的外心的性质:

1.三角形三条边的垂直平分线的交于一点,该点即为三角形外接圆的圆心;

2三角形的外接圆有且只有一个,即对于给定的三角形,其外心是的,但一个圆的内接三角形却有无数个,这些三角形的外心重合;

3.锐角三角形的外心在三角形内;

钝角三角形的外心在三角形外;

直角三角形的外心与斜边的中点重合。

在△ABC中

=OB=OC=R

5.∠BOC=2∠BAC,∠AOB=2∠ACB,∠COA=2∠CBA

数学中考知识点总结【第四篇】

二次根式的加减法

知识点1:同类二次根式

(Ⅰ)几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式叫做同类二次根式,如这样的二次根式都是同类二次根式。

(Ⅱ)判断同类二次根式的方法:(1)首先将不是最简形式的二次根式化为最简二次根式以后,再看被开方数是否相同。(2)几个二次根式是否是同类二次根式,只与被开方数及根指数有关,而与根号外的因式无关。

知识点2:合并同类二次根式的方法

合并同类二次根式的理论依据是逆用乘法对加法的分配律,合并同类二次根式,只把它们的系数相加,根指数和被开方数都不变,不是同类二次根式的不能合并。

知识点3:二次根式的加减法则

二次根式相加减先把各个二次根式化成最简二次根式,再把同类二次根式合并,合并的方法为系数相加,根式不变。

知识点4:二次根式的混合运算方法和顺序

运算方法是利用加、减、乘、除法则以及与多项式乘法类似法则进行混合运算。运算的顺序是先乘方,后乘除,最后加减,有括号的先算括号内的。

知识点5:二次根式的加减法则与乘除法则的区别

乘除法中,系数相乘,被开方数相乘,与两根式是否是同类根式无关,加减法中,系数相加,被开方数不变而且两根式须是同类最简根式。

中考数学知识点总结【第五篇】

考点1:确定事件和随机事件

考核要求:

〔 1〕理解必然事件、不可能事件、随机事件的概念,知道确定事件与必然事件、不可能事件的关系;

〔 2〕能区分简单生活事件中的必然事件、不可能事件、随机事件。

考点2:事件发生的可能性大小,事件的概率

考核要求:

〔 1〕知道各种事件发生的可能性大小不同,能判断一些随机事件发生的可能事件的大小并排出大小顺序;

〔 2〕知道概率的含义和表示符号,了解必然事件、不可能事件的概率和随机事件概率的取值范围;

〔3〕理解随机事件发生的频率之间的区别和联系,会根据大数次试验所得频率估计事件的概率。

〔1〕在给可能性的大小排序前可先用〝一定发生〞、〝很有可能发生〞、 〝可能发生〞、〝不太可能发生〞、〝一定不会发生〞等词语来表述事件发生的可能性的大小;

〔 2〕事件的概率是确定的常数,而概率是不确定的,可是近似值,与试验的次数的多少有关,只有当试验次数足够大时才能更精确。

考点3:等可能试验中事件的概率问题及概率计算

考核要求

〔1〕理解等可能试验的概念,会用等可能试验中事件概率计算公式来计算简单事件的概率;

〔2〕会用枚举法或画〝树形图〞方法求等可能事件的概率,会用区域面积之比解决简单的概率问题;

〔3〕形成对概率的初步认识,了解机会与风险、规那么公平性与决策合理性等简单概率问题。

〔1〕计算前要先确定是否为可能事件;

〔2〕用枚举法或画〝树形图〞方法求等可能事件的概率过程中要将所有等可能情况考虑完整。

考点4:数据整理与统计图表

考核要求:

〔1〕知道数据整理分析的意义,知道普查和抽样调查这两种收集数据的方法及其区别;

〔2〕结合有关代数、几何的内容,掌握用折线图、扇形图、条形图等整理数据的方法,并能通过图表获取有关信息。

考点5:统计的含义

考核要求:

〔1〕知道统计的意义和一般研究过程;

〔2〕认识个体、总体和样本的区别,了解样本估计总体的思想方法。

考点6:平均数、加权平均数的概念和计算

考核要求:

〔1〕理解平均数、加权平均数的概念;

〔2〕掌握平均数、加权平均数的计算公式。注意:在计算平均数、加权平均数时要防止数据漏抄、重抄、错抄等错误现象,提高运算准确率。

考点7:中位数、众数、方差、标准差的概念和计算

考核要求:

〔 1〕知道中位数、众数、方差、标准差的概念;

〔 2〕会求一组数据的中位数、众数、方差、标准差,并能用于解决简单的统计问题。

〔1〕当一组数据中出现极值时,中位数比平均数更能反映这组数据的平均水平;

〔2〕求中位数之前必须先将数据排序。

考点8:频数、频率的意义,画频数分布直方图和频率分布直方图考核要求:

〔 1〕理解频数、频率的概念,掌握频数、频率和总量三者之间的关系式;

〔2〕会画频数分布直方图和频率分布直方图,并能用于解决有关的实际问题。解题时要注意:频数、频率能反映每个对象出现的频繁程度,但也存在差别:在同一个问题中,频数反映的是对象出现频繁程度的绝对数据,所有频数之和是试验的总次数;频率反映的是对象频繁出现的相对数据,所有的频率之和是1。

考点9:中位数、众数、方差、标准差、频数、频率的应用考核要求:

〔1〕了解基本统计量〔平均数、众数、中位数、方差、标准差、频数、频率〕的意计算及其应用,并掌握其概念和计算方法;

〔2〕正确理解样本数据的特征和数据的代表,能根据计算结果作出判断和预测;

〔3〕能将多个图表结合起来,综合处理图表提供的数据,会利用各种统计量来进行推理和分析,

要练说,得练看。看与说是统一的,看不准就难以说得好。练看,就是训练幼儿的观察能力,扩大幼儿的认知范围,让幼儿在观察事物、观察生活、观察自然的活动中,积累词汇、理解词义、发展语言。在运用观察法组织活动时,我着眼观察于观察对象的选择,着力于观察过程的指导,着重于幼儿观察能力和语言表达能力的提高。

单靠〝死〞记还不行,还得〝活〞用,姑且称之为〝先死后活〞吧。让学生把一周看到或听到的新鲜事记下来,摒弃那些假话套话空话,写出自己的真情实感,篇幅可长可短,并要求运用积累的成语、名言警句等,定期检查点评,选择优秀篇目在班里朗读或展出。这样,即巩固了所学的材料,又锻炼了学生的写作能力,同时还培养了学生的观察能力、思维能力等等,达到〝一石多鸟〞的效果。研究解决有关的实际生活中问题,然后作出合理的解决。

一般说来,〝教师〞概念之形成经历了十分漫长的历史。杨士勋〔唐初学者,四门博士〕 ?春秋谷梁传疏?曰:〝师者教人以不及,故谓师为师资也〞。

这儿的〝师资〞,其实就是先秦而后历代对教师的别称之一。

韩非子也有云:“今有不才之子?…师长教之弗为变〃其“师长〃当然也指教师。这儿的〝师资〞和〝师长〞可称为〝教师〞概念的雏形,但仍说不上是名副其实的〝教师〞,因为〝教师〞必须要有明确的传授知识的对象和本身明确的职责。

35 475754
");