数学中考知识点总结实用5篇

网友 分享 时间:

【路引】由阿拉题库网美丽的网友为您整理分享的“数学中考知识点总结实用5篇”文档资料,以供您学习参考之用,希望这篇范文对您有所帮助,喜欢就复制下载支持吧!

中考语文常用知识点总结1

三种感情色彩:褒义、贬义、中性。

小说三要素:人物(根据能否表现小说主题思想确定主要人物)情节(开端/发展/高潮/结局)环境(自然环境/社会环境。)

议论文三要素:论点、论据、论证。

议论文结构三部分:提出问题(引论)、分析问题(本论)、解决问题(结论)。

三种说明顺序:时间顺序、空间顺序、逻辑顺序。

语言运用三原则:简明、连贯、得体。

它山之石可以攻玉,以上就是差异网为大家带来的5篇《数学中考知识点总结》,希望对您有一些参考价值,更多范文样本、模板格式尽在差异网。

什么是数学2

数学[英语:mathematics,源自古希腊语μθημα(máthēma);经常被缩写为math或maths],是研究数量、结构、变化、空间以及信息等概念的一门学科。

数学是人类对事物的抽象结构与模式进行严格描述的一种通用手段,可以应用于现实世界的任何问题,所有的数学对象本质上都是人为定义的。从这个意义上,数学属于形式科学,而不是自然科学。不同的数学家和哲学家对数学的确切范围和定义有一系列的看法。

在人类历史发展和社会生活中,数学发挥着不可替代的作用,同时也是学习和研究现代科学技术必不可少的基本工具。

数学中考知识点总结3

考点1:确定事件和随机事件

考核要求:

〔 1〕理解必然事件、不可能事件、随机事件的概念,知道确定事件与必然事件、不可能事件的关系;

〔 2〕能区分简单生活事件中的必然事件、不可能事件、随机事件。

考点2:事件发生的可能性大小,事件的概率

考核要求:

〔 1〕知道各种事件发生的可能性大小不同,能判断一些随机事件发生的可能事件的大小并排出大小顺序;

〔 2〕知道概率的含义和表示符号,了解必然事件、不可能事件的概率和随机事件概率的取值范围;

〔3〕理解随机事件发生的频率之间的区别和联系,会根据大数次试验所得频率估计事件的概率。

〔1〕在给可能性的大小排序前可先用〝一定发生〞、〝很有可能发生〞、 〝可能发生〞、〝不太可能发生〞、〝一定不会发生〞等词语来表述事件发生的可能性的大小;

〔 2〕事件的概率是确定的常数,而概率是不确定的,可是近似值,与试验的次数的多少有关,只有当试验次数足够大时才能更精确。

考点3:等可能试验中事件的概率问题及概率计算

考核要求

〔1〕理解等可能试验的概念,会用等可能试验中事件概率计算公式来计算简单事件的概率;

〔2〕会用枚举法或画〝树形图〞方法求等可能事件的概率,会用区域面积之比解决简单的概率问题;

〔3〕形成对概率的初步认识,了解机会与风险、规那么公平性与决策合理性等简单概率问题。

〔1〕计算前要先确定是否为可能事件;

〔2〕用枚举法或画〝树形图〞方法求等可能事件的概率过程中要将所有等可能情况考虑完整。

考点4:数据整理与统计图表

考核要求:

〔1〕知道数据整理分析的意义,知道普查和抽样调查这两种收集数据的方法及其区别;

〔2〕结合有关代数、几何的内容,掌握用折线图、扇形图、条形图等整理数据的方法,并能通过图表获取有关信息。

考点5:统计的含义

考核要求:

〔1〕知道统计的意义和一般研究过程;

〔2〕认识个体、总体和样本的区别,了解样本估计总体的思想方法。

考点6:平均数、加权平均数的概念和计算

考核要求:

〔1〕理解平均数、加权平均数的概念;

〔2〕掌握平均数、加权平均数的计算公式。注意:在计算平均数、加权平均数时要防止数据漏抄、重抄、错抄等错误现象,提高运算准确率。

考点7:中位数、众数、方差、标准差的概念和计算

考核要求:

〔 1〕知道中位数、众数、方差、标准差的概念;

〔 2〕会求一组数据的中位数、众数、方差、标准差,并能用于解决简单的统计问题。

〔1〕当一组数据中出现极值时,中位数比平均数更能反映这组数据的平均水平;

〔2〕求中位数之前必须先将数据排序。

考点8:频数、频率的意义,画频数分布直方图和频率分布直方图考核要求:

〔 1〕理解频数、频率的概念,掌握频数、频率和总量三者之间的关系式;

〔2〕会画频数分布直方图和频率分布直方图,并能用于解决有关的实际问题。解题时要注意:频数、频率能反映每个对象出现的频繁程度,但也存在差别:在同一个问题中,频数反映的是对象出现频繁程度的绝对数据,所有频数之和是试验的总次数;频率反映的是对象频繁出现的相对数据,所有的频率之和是1。

考点9:中位数、众数、方差、标准差、频数、频率的应用考核要求:

〔1〕了解基本统计量〔平均数、众数、中位数、方差、标准差、频数、频率〕的意计算及其应用,并掌握其概念和计算方法;

〔2〕正确理解样本数据的特征和数据的代表,能根据计算结果作出判断和预测;

〔3〕能将多个图表结合起来,综合处理图表提供的数据,会利用各种统计量来进行推理和分析,

要练说,得练看。看与说是统一的,看不准就难以说得好。练看,就是训练幼儿的观察能力,扩大幼儿的认知范围,让幼儿在观察事物、观察生活、观察自然的活动中,积累词汇、理解词义、发展语言。在运用观察法组织活动时,我着眼观察于观察对象的选择,着力于观察过程的指导,着重于幼儿观察能力和语言表达能力的提高。

单靠〝死〞记还不行,还得〝活〞用,姑且称之为〝先死后活〞吧。让学生把一周看到或听到的新鲜事记下来,摒弃那些假话套话空话,写出自己的真情实感,篇幅可长可短,并要求运用积累的成语、名言警句等,定期检查点评,选择优秀篇目在班里朗读或展出。这样,即巩固了所学的材料,又锻炼了学生的写作能力,同时还培养了学生的观察能力、思维能力等等,达到〝一石多鸟〞的效果。研究解决有关的实际生活中问题,然后作出合理的解决。

一般说来,〝教师〞概念之形成经历了十分漫长的历史。杨士勋〔唐初学者,四门博士〕 ?春秋谷梁传疏?曰:〝师者教人以不及,故谓师为师资也〞。

这儿的〝师资〞,其实就是先秦而后历代对教师的别称之一。

韩非子也有云:“今有不才之子?…师长教之弗为变〃其“师长〃当然也指教师。这儿的〝师资〞和〝师长〞可称为〝教师〞概念的雏形,但仍说不上是名副其实的〝教师〞,因为〝教师〞必须要有明确的传授知识的对象和本身明确的职责。

中考语文常用知识点总结4

怎样的一节课才算是好课呢?这是作为老师的我必须时刻考虑的问题。学校领导要求我们老师坚守底线,思考这样的问题就是老师的底线。同时在经过在网上搜索并学习有关教育专家有关一节好课的标准的文章,结合我自己的多年的教学经验,我认为一节好课,至少要具备下列一些条件。

一,首先,这节课应该以学生的学习活动为主体。在教学活动中,学生是活动的主体。老师的教是一个辅助性的活动,这个活动是帮助学生在学习过程中解决疑难或协助学生完成学习任务,启发学生进行思维,引导学生做事和形成科学的学习方法。因此,课堂的主要时间和主动权属于学生。老师的讲解不能过多,更不能以老师的灌输取代学生主动的学习。在这种思想下有很多课堂的模式,但是我认为:融安高中有效新课堂模式是最科学和有效的。它很好地体现了这一教育理念。我要努力地去学习、掌握、运用和发展这种模式,同时要虚心学习,向师傅们学习。

二,是否有效或高效是评判一节课的又一基本要件。当今的教学要在众多的竞争对手中胜出,比时间,看谁更能挤出更多的时间已没有多少空间了。而竞争的方向早已转向效率的比拼。因此,一节好课必须是一节高效的课。高效体现在什么地方呢?首先是全体学生的积极参与并真正理解和掌握老师所教的东西。第二,课堂容量大:在同等的时间内,学生掌握更多的知识。第三,养成科学的思维方式和形成解决问题的能力。因此,课堂不仅要求要有效,更应高效。对课堂的高效要求永远没有完成时,只有不断的追求和进取。用一句时髦的话说,对课堂的高效追求,我永远在路上。

三,自主学习和合作探究是一节好课的不可或缺的活动。怎样的学习才记忆深刻?怎样的学习才能更好的内化为能力?只有自主学习才有这样的效果。同时合作探究更能把这种效果推及到全班的每一个学生。学生通过合作和探究使小组各个成员都参与到学习当中来,使每一个学生都经验学习的艰辛和快乐。更重要的是让学生在合作中学会与人交流、与人合作、学会表达和合理处置各种人际关系。因此,课堂想要高效,就必须通过引导和组织学生自主学习和合作探究来加以实现。今后的教学,对自主学习任务的设计和合作探究活动的设计和组织将是备课过程中十分重要的一个内容和环节。

四,侧重练习是一节好课的具体要求。一节课不管你讲得有多好听,思维缜密、口才上佳、风趣幽默都无法取代学生的训练。学生必须通过训练才能上升为能力。课堂上的练起码有三大要求:1.练习的针对性,即:学什么练什么。2.练习的多样性,形式丰富,灵活多样。3.练习具有梯度,适合不同层次学生练习,通过或练习使全体学生得以提高。因此,在教学准备中,对练习的设计也是相当重要的一个环节。

五,艺术与激情。每一节课都要精心地去准备和设计,而这种精心的准备和设计应该有一定的艺术性。因为只有艺术性才能使高中生信服,才能激起他们的求知兴趣和欲望。而澎湃的激情则是营建活跃课堂比不可少的情感感染!

一节好课,五点俱全,我努力追求,倾力践行。

中考数学知识点总结5

导数是微积分中的重要基础概念。当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限。在一个函数存在导数时,称这个函数可导或者可微分。可导的函数一定连续。不连续的函数一定不可导。导数实质上就是一个求极限的过程,导数的四则运算法则来源于极限的四则运算法则。

(一)导数第一定义

设函数 y = f(x) 在点 x0 的某个领域内有定义,当自变量 x 在 x0 处有增量 △x ( x0 + △x 也在该邻域内 ) 时,相应地函数取得增量 △y = f(x0 + △x) - f(x0) ;如果 △y 与 △x 之比当 △x0 时极限存在,则称函数 y = f(x) 在点 x0 处可导,并称这个极限值为函数 y = f(x) 在点 x0 处的导数记为 f(x0) ,即导数第一定义

(二)导数第二定义

设函数 y = f(x) 在点 x0 的某个领域内有定义,当自变量 x 在 x0 处有变化 △x ( x - x0 也在该邻域内 ) 时,相应地函数变化 △y = f(x) - f(x0) ;如果 △y 与 △x 之比当 △x0 时极限存在,则称函数 y = f(x) 在点 x0 处可导,并称这个极限值为函数 y = f(x) 在点 x0 处的导数记为 f(x0) ,即 导数第二定义

(三)导函数与导数

如果函数 y = f(x) 在开区间 I 内每一点都可导,就称函数f(x)在区间 I 内可导。这时函数 y = f(x) 对于区间 I 内的每一个确定的 x 值,都对应着一个确定的导数,这就构成一个新的函数,称这个函数为原来函数 y = f(x) 的导函数,记作 y, f(x), dy/dx, df(x)/dx。导函数简称导数。

(四)单调性及其应用

1、利用导数研究多项式函数单调性的一般步骤

(1)求f(x)

(2)确定f(x)在(a,b)内符号 (3)若f(x)0在(a,b)上恒成立,则f(x)在(a,b)上是增函数;若f(x)0在(a,b)上恒成立,则f(x)在(a,b)上是减函数

2、用导数求多项式函数单调区间的一般步骤

(1)求f(x)

(2)f(x)0的解集与定义域的交集的对应区间为增区间; f(x)0的解集与定义域的交集的对应区间为减区间

221381