分数乘法教案(精编5篇)

网友 分享 时间:

【阅读指引】阿拉题库网友为您分享整理的“分数乘法教案(精编5篇)”范文资料,以供您参考学习之用,希望这篇文档对您有所帮助,喜欢就下载分享给大家吧!

分数乘法教案1

教学目标

1.使学生掌握分析分数应用题的方法,会分析关系句,找准单位1。

2.使学生弄清题中的数量关系,掌握解题思路,正确列式解答。

3.培养学生分析、解决问题的能力,以及知识迁移的能力。

4.培养学生良好的审题习惯。

教学重点和难点

1.会分析数量关系,掌握解题思路,正确解答。

2.找准单位1;根据问题需要的条件,把间接条件转化为直接条件。

教学过程

导语:前边我们已经学过了简单的分数应用题,今天继续学习分数应用题。(板书课题:分数乘法应用题)

(一)复习铺垫

1.说图意填空。(投影)

问:谁是单位1?

2.说图意回答问题。(投影)

问:①谁和谁比,谁是单位1?

3.准备题:

(做在练习本上,画图列式计算,一个学生到黑板板演。)

教师订正讲评。

提问:①谁是单位1?

③要求用去多少吨就是求什么?

少。)

④根据什么用乘法计算?

(根据分数乘法的意义,求一个数的几分之几是多少用乘法计算。)

师:如果把问改成还剩多少吨应该怎样计算呢?这就是今天要研究的稍复杂的分数应用题。(在课题板书前加上稍复杂的。)

(二)学习新课

1.学习例4。

(1)读题找出条件和问题,并问:问题变了,现在?应画在哪?(在线段图中把?号移动。)

(2)分析数量关系。(同桌互相说。)

提问:单位1变了吗?单位1是谁?

请同学们认真观察线段图,再根据刚才复习的有关知识讨论这道题如何解答,试着做一做。

学生汇报结果,让学生说解题思路,老师一边把图补充完整。

=2500-1500

=1000(吨)

答:还剩1000吨。

生:把原有煤的总数看作单位1,先求出用去多少吨,就可以求出还剩多少吨。

师追问:求用去多少吨你是怎么想的?

答:还剩1000吨。

生:把原有煤的总数看作单位1,欲求剩下多少吨,就要先求

(3)引导学生比较:这两种解法在思路上有什么相同点和不同点?

相同点:两种解法都是经过两步计算。

不同点:第一种解法是先求出用去了多少吨,再用总吨数减去用去的吨数,得到的就是剩下多少吨。

第二种解法是先求出剩下的占总吨数的几分之几,再求剩下的是多少吨。

(4)练习做一做(1):

昆虫标本有多少件?

(做完让学生说解题思路、投影订正。)

2.学习例5。

六月份捕鱼多少吨?

(1)读题找出条件、问题。

(2)师生合作画出线段图,并分析数量关系。(让学生说画图过程)

问:①谁和谁比,谁是单位1?

(3)列式解答。

师:请同学们认真观察线段图,分析数量关系。小组讨论如何解答,并考虑可用几种方法解答。

学生汇报结果。(老师板书列式)

答:六月份捕鱼3000吨。

师追问:你是怎么想的?

生:要想求六月份捕鱼多少吨,就得先求出六月份比五月份多捕鱼多少吨。

师再追问:怎样求六月份比五月份多捕的吨数?

捕的吨数。

答:六月份捕鱼3000吨。

师追问:怎么想的?

生:把五月份的吨数看作单位1,先求出六月份捕的相当于五月份捕的几分之几,就可以求出六月份捕鱼多少吨。

师问:这两种解法有什么联系和区别?

(联系:两种解法都利用了分数乘法的意义求已知数的几分之几。区别:解题思路不同。)

(4)练习做一做(2)。

答。

(三)巩固练习

1.补充问题并列式解答。(复合投影片)

________?

2.选择正确答案的序号填在( )里。

包?列式是

[ ]

[ ]

A.乙队修了多少米?

B.乙队比甲队多修多少米?

C.甲队比乙队多修多少米?

D.乙队比甲队少修多少米?

(3)根据条件和问题列出算式。

已知一袋大米重40千克。

(四)课堂总结

今天我们学习了较复杂的分数应用题,复杂在哪?解题的关键是什么?

(复杂在问题所需要的条件没有直接给出,解题关键必须先把这个条件求出来。)

课堂教学设计说明

(1)在简单分数应用题的基础上进行本节课教学,学生已有了一定基础,因此首先设计三道复习题,为学生学习新知识做好辅垫。尤其从准备题过渡到例4,给学生搭了从旧知识迁移到新知识的桥梁,学生容易接受。同时使学生悟出新知识是在原有知识基础上发展起来的规律。

(2)老师围绕重点难点精心设计提问,并充分利用线段图引导学生分析题中数的关系,抓住解题关键,明确解题思路,掌握解题方法。并通过两次对两种不同的解法对比及课后小结,进一步突出本节课的重点、难点。

(3)因为学生有了学习简单分数应用题的基础,因此老师大胆放手,让学生同桌或小组讨论、分析、试做,做完后让学生自己说解题思路。学生充分参与了课堂教学过程,成为学习的主人,调动了积极性。同时培养了学生的口头表达、分析和与人合作的能力。

分数乘法教案2

教学目标:

1、知识与技能 使学生掌握分数乘法的计算方法,并能运用这个方法进行相关计算;使学生能分辨清楚先乘后加减的运算顺序,并能熟练地应用乘法运算定律进行简便计算。

2、过程与方法 回顾、整理、练习、订正。

3、情感态度与价值观 培养学生良好的计算习惯和分析解决问题的能力。

教学重点:

引导学生找准单位1,分析应用题的数量关系。

教学难点:

让学生正确、独立地分析应用题的数量关系。

教具运用:

课件

教学过程:

一、创设情境,导入复习。

出示:我们学校的图书室里有故事书400本,连环画是故事书的 ,作文书是连环画的 。学校图书室里有有多少本作文书?

1、学生独立解决。

2、汇报交流做法。

3、提示课题:分数乘法的整理和复习

二、回顾整理,建构网络。

1、让学生说一说这个单元你学到了哪些知识?(小组内说一说,适当的时机师生进行点评)

2、展示自己整理好的分数乘法的知识。

3、小组合作,优化整理。(课件演示)

分数乘整数

求几个相同分数和的简便运算

计算方法:分子相乘的积作分子,分母相乘的积作分母。(能约分的先约分再计算)

一个数乘分数

求一个数的几分之几是多少

分数乘加、乘减及乘法运算定律的灵活运用

灵活运用运算定律,可以使计算简便。

乘法交换律:a.b=b.a;

乘法结合律(a.b).c=a.(b.c);

乘法分配律(a+b)。c=+ ;

乘法分配律的逆运算:+=(a+b)。c

解决问题

1、求一个数的几分之几 是多少。

2、稍复杂的求一个数的几分之几是多少。

关系式:单位1的量(一个数)问题所对应的几分之几=所求问题

三、自主检评,完善提高。

1、计算下面各题,说一说分数乘法是怎样计算的?

2、下面各题怎样计算比较简便?

3、(1)骆驼驼峰中贮藏的脂肪,相当于体重的 ,一头体重225千克的骆驼,驼峰里含有多少脂肪?

(2)一头体重225kg的骆驼,驮着比它体重还多 的货物。它驮着的货物重多少千克?

4、(1)食堂运来24吨的煤,第一次用去 ,第二次用去的是第一次的 ,第二次用去多少吨?

(2)食堂运来24吨的煤,第一次用去 ,第二次用去的这批煤的 ,第二次用去多少吨?

(3)食堂运来24吨的煤,第一次用去 ,第二次用去的是第一次的2倍少3吨,第二次用去多少吨?

四、课堂小结。略

分数乘法教案3

教学目标

知识与技能

结合具体情境理解一个数乘分数的意义就是“求一个数的几分之几是多少”。

过程与方法

通过组织学生进行迁移、类推、归纳、交流等数学活动,培养学生的类推、归纳能力。

情感态度与价值观

通过一个数乘以分数应用的广泛性事例,对学生进行学习目的性教育,激发学生学习动机和兴趣。

教学过程:

一、复习导入

1、计算下列各题并说出计算方法。

×4 ×4 ×14×

2、引入:这节课我们来继续学习分数乘法的问题。(板书课题)

二、探索新知

(一)一个数乘分数的意义

1、投影出示例题2。

(1)问题一:3桶水共多少升?

指名列出算式:12×3。

提问:你是怎么想的?

启发学生得出:求“3桶水共多少升?”就是求3个12L,也就是求12L的3倍是多少。(2)问题二:桶水共多少升?

指名列出算式:12×。

提问:根据什么列示的?

启发学生思考:桶就是半桶,求桶是多少升?就是求12L的一半是多少,也就是求12L的是多少。

(3)问题三:桶水共多少升?

指名列出算式:12×。

提问:你是怎么想的?

启发学生思考:求桶是多少?就是求12L的是多少。

2、结合上面的几个问题,你知道“12×”和“12×”这两个算式表示的意义分别是什么吗?

12×表示12L的是多少:12×表示12L的是多少。

3、总结:一个数乘分数的意义。

一个数乘几分之几表示的是求这个数的几分之几是多少。

4、完成教材第3页“做一做”。

引导:这道题求吃了多少千克,也就是求3千克的是多少千克。

(二)分数乘分数的计算方法。

投影出示例题3。

李伯伯家有一块公顷的地。种土豆的面积占这块地的,种玉米的面积占。

1、问题一:种土豆的面积是多少公顷?

(1)提问:求“种土豆的面积是多少公顷?”实际上就是求什么?怎样列示呢?

(实际上就是求公顷的是多少公顷,列示是:×。)

(2)探究×的计算方法。

①让学生拿出准备好的一张正方形纸表示一公顷,先画出它的,表示公顷。

②再涂出公顷的。

引导理解:求公顷的是多少公顷,就是把公顷平均分成5分,取其中的1份。

③观察交流。

观察手中的长方形纸,想一想,公顷的是多少公顷,你是怎么想的?

先让学生在小组内交流,在组织全班交流。

通过交流得出:求公顷的是多少公顷,就是把公顷平均分成5分,取其中的1份。也就是把1公顷平均分成(2×5)份,取其中的1份,即×1==。

板书:×===(公顷)

2、问题二:种玉米的面积是多少公顷?

⑴学生独立列出算式:×

⑵提问:“×”等于多少呢?你能用颜色表示的吗?

⑶学生动手操作,交流计算方法和思路。

与前面一样,也是把这张纸平均分成(2×5)份,不同的是要取其中的3份,可以得到:×===(公顷)

3、分数乘分数的计算方法。

先小组讨论,再汇报交流。

计算法则:分数乘分数,用分子相乘的积作分子,用分母相乘的积分母。(板书)

三、巩固练习。

1、教材第4页“做一做”第1题。

这道题是有关一个数乘分数的意义的练习。

组织练习时,可以先让学生独立阅读理解,在教材上填一填。再指名汇报,并让学生说一说是怎么想的。

2、教材第5页“做一做”第2题。

这是一道看图计算的练习,皆在通过练习,培养学生的观察能力,加深对分数乘分数计算方法的理解。

组织练习时,可以先让学生看图填一填,再让学生说一说思考过程。

3、教材第5页“做一做”第3题。

这道题是运用所学的分数乘法计算知识解决实际问题,在加深对一个数乘分数的意义理解的同时,又可以巩固整数乘分数的计算方法。

4、教材第6页“练习一”第4、5题。

先学生独立计算,并让学生说一说是怎么想的。

四、全课小结。

作业设计 练习二第3、4题。

分数乘法教案4

分数乘法

1、分数乘法的意义和计算法则:

课时:1课时。 总课时:1课时。执行时间:

课题:分数乘整数。

教学目的:

1、 使学生理解分数乘整数的意义;

2、 握分数乘整数的计算法则,并能够正确地进行计算。

3、 培养学生的学习兴趣。教具:多媒体教学课件。

教学过程():

一、 复习引入

1、 5个12是多少?怎么样列式?

算式:12+12+12+12+12=60或12×5=60

小结:求几个相同加数的和,可以用加法算,也可以用乘法算。

2、 计算:

2/7+2/7+2/7 3/10+3/10+3/10

(1) 说一说算法,(2)说一说表示的意义,(3)这道题是否可以用乘法计算?能写出乘法算式吗?

二、 尝试、探究

1、 分数乘整数的意义,

(1)学生说,教师板书:2/7×3 3/10×3

(2)学生交流。(3)教师强调意义。

2、 探究分数乘整数的计算法则,

(1) 学生试计算3/10×3,汇报交流,

方法一:因为3/10+3/10+3/10=9/10,所以3/10×3=9/10.方法二:3/10里面有3个1/10,3个3/10里面就有(3×3)个1/10也就是9/10.

(3)肯定学生想法,

课件演示例1看教本:

小新、爸爸、妈妈一起吃一块蛋糕,每人吃2/9块,3人一共多少块?

(1)学生审题, (2)引导学生看思考,

(2) 学生交流板书:

用加法算:2/9+2/9+2/9=2+2+2/9=6/9=2/3(块)

用乘法算:2/9×3=2×3/9=6/9=2/3(块)

答:3个人一共吃2/3块。

(4)小结计算法则:

三、 巩固练习

1、 做练习一的第1题。

2、 做一做,

四、 作业:第3、4题。

五、 后记:

分数乘法教案5

教学目标:

1、理解整数乘法运算定律对于分数乘法同样适用,并能应用这些定律进行一些简便计算。

2、培养学生大胆猜测,勇于实践的思维品质。

教学重点:

会进行分数的混合运算,运用运算定律进行简便计算。

教学难点:

灵活运用运算定律进行简便计算。

教具准备:

多媒体课件。

教学过程:

一、导入新课(激发兴趣,明确目标)

1、运算定律。

我们在四年级时学习过乘法的运算定律,同学们还记得吗?

(学生回答,教师板书运算定律)

乘法交换律:a×b=b×a

乘法结合律:(a×b)×c=a×(b×c)

乘法分配律:(a+b)×c=a×c+b×c

2、这些运算定律有什么用处?你能举例说明吗?

25×7×4 0。36×101

(学生口述自己是怎样应用乘法的运算定律简算上面各题的。)

二、自主探究(自主学习,探讨问题)

1、引入

同学们应用乘法的运算定律,可以使整数、小数的一些计算简便,这些运算定律能不能应用到分数乘法中呢?今天这节课我们就来共同研究这个问题。

(板书课题:整数乘法的运算定律能否推广到分数乘法)

2、推导运算定律是否适用于分数。

(1)学生发表对课题的见解。

(2)验证

有些同学认为整数乘法的运算定律能适用于分数乘法,而有些同学认为不能,你们能找到证据证明自己的观点吗?(学生小组合作学习)

3、教学例5。

(1)出示:,学生小组合作独立解答。

4、教学例6。

(1)出示:,学生小组合作独立计算。

(2)小组汇报学习成果,说一说你们组应用了什么运算定律。

5、小结

应用乘法交换律、结合律和分配律,可以使一些计算简便,在计算时,要认真观察已知数有什么特点想应用什么定律可以使计算简便。

三、拓展总结(应用拓展,盘点收获)

1、完成练习三的第6题。

学生说一说应用了什么运算

2、完成课本第10页的“做一做”题目。

其中第2题引导学生讨论解题思路,把87改成“86+1”应用乘法分配律计算比较简便。

20 259880
");