正比例教学设计【优推5篇】

网友 分享 时间:

【导言】此例“正比例教学设计【优推5篇】”的教案资料由阿拉题库网友为您分享整理,以供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载支持吧!

六年级数学《正比例》教学设计【第一篇】

教学内容:正比例

教材分析:

正比例这个内容是学生在学习了比的意义、比的化简与比的应用等内容的基础上进行的。本课是有关比例知识的初步认识,结合具体情境,理解正比例的意义,判断两个量是否成正比例。教材提供了三个情境,其中一个是图像,两个是表格,让学生在具体问题、具体情境中认识成正比例的量,初步感受生活中存在很多成正比例的量;让学生通过观察、比较、分析、归纳等数学活动,自主发现正比例的变化规律,理解正比例的意义,会判断两个量是否成正比例。

学情分析:

学生在学习乘法时,已经知道一个因数扩大几倍,另一个因数不变,积就扩大几倍这个规律,这个规律实际上就是正比例的一个变化规律,所以,学生对这个内容是有个初步的接触。在这个内容的学习中,学生最容易掌握的是根据表格中的具体数据判断两个量是否成正比例,最难掌握的是离开具体数据,根据文字叙述判断两个量是否成正比例,特别是学生对学过的数量关系不熟悉时就更难了。

教学目标:

1.结合丰富的事例,认识正比例,理解正比例的意义,并初步感受生活中存在很多成正比例的量。

2.能根据正比例的意义,判断两个相关联的量是不是成正比例。

教学重点:

1、结合丰富的事例,认识正比例,理解正比例的意义。

2、能根据正比例的意义,判断两个相关联的量是不是成正比例。

教学难点:

能根据正比例的意义,判断两个相关联的量是不是成正比例。

教学用具:

课件

教学过程:

一:在情境中感受两种相关联的量之间的变化规律。

(一)情境一:

1、一种汽车行驶的速度为90千米/小时。汽车行驶的时间和路程如下:

2、请把下表填写完整。

3、从表中你发现了什么规律?

说说你发现的规律:路程与时间的比值(速度)相同。

(二)情境二:

1、一些人买一种苹果,购买苹果的质量和应付的钱数如下。

2、把表填写完整。

3、从表中发现了什么规律?

应付的钱数与质量的比值(也就是单价)相同。

4、说说以上两个例子有什么共同的特点。

小结:路程随时间的变化而变化,在变化过程中路程与时间的比值相同;应付的钱数随购买苹果的质量的变化而变化,在变化过程中应付的钱数与质量的比值相同。

(三)情境三:

1、 观察图,分别把正方形的周长与边长,面积与边长的变化情况填入表格中。请根据你的观察,把数据填在表中。

2、填完表以后思考:这两个表格中的变化情况与上两题的变化规律相同吗?

说说从数据中发现了什么?

3、 小结:正方形的周长和面积都随边长的增加而增加,在变化过程中,正方形的周长与边长的比值一定都是4。正方形的面积一边长的比是边长,是一个不确定的值。

(四)归纳正比例的意义

1. 时间增加,所走的路程也相应增加,而且路程与时间的比值(速度)相同。那么我们说路程和时间成正比例。

2. 购买苹果应付的钱数与质量有什么关系?

3. 正方形的周长与边长有什么关系?

4. 观察思考成正比例的量有什么特征?

一个量变化,另一个量也随着变化,并且这两个量的比值相同。

5. 小结

两种相关联的量,一种量扩大,另一种量也随着扩大,一种量缩小,另一种量也随着缩小,并且这两种量中相对应的两个数的比值(也就是商)一定,这两种量就是成正比例的量,它们的关系就是正比例关系。

二、巩固练习

1. 想一想:

正方形的周长与边长成正比例吗?面积与边长呢?为什么?

师小结:

(1)正方形的周长随边长的变化而变化,并且周长与边长的比值都是4,所以正方形的周长与边长成正比例。

请你也试着说一说。

(2)正方形的面积虽然也随边长的变化而变化,但面积与边长的比值是一个变化的值,所以正方形的面积和边长不成正比例。

请生用自己的语言说一说。

2、小明和爸爸的年龄变化情况如下:

小明的年龄/岁

6

7

8

9

10

11

爸爸的年龄/岁

32

33

(1) 把表填写完整。

(2) 父子的年龄成正比例吗?为什么?

(3) 爸爸的年龄=小明的年龄+26。虽然小明岁数增加,爸爸岁数也增加,但是小明岁数与爸爸岁数的比值随着时间发生变化,不是一个确定的值,所以父子的年龄不成正比例。

与同桌交流,再集体汇报

三、全课总结:说说你在这节课中学到了什么知识?有什么不明白的地方?

板书设计:

正比例

路程÷时间=速度(一定)

总价÷数量=单价(一定)

正方形的周长÷边长=4(一定)

两种相关联的量,一种量扩大(或缩小),另一种量也随着扩大(或缩小),并且这两种量的比值(也就是商)一定,这两种量就成正比例。

正比例教学设计【第二篇】

教学目标

1.使学生理解正比例的意义。

2.能根据正比例的意义判断两种量是不是成正比例。

3.培养学生的`抽象概括能力和分析判断能力。

教学重点

使学生理解正比例的意义。

教学难点

引导学生通过观察、思考发现两种相关联的量的变化规律,即它们相对应的数的比值一定,从而概括出正比例关系的概念。

教学过程

一、复习准备

口答(课件演示:成正比例的量)

1.已知路程和时间,怎样求速度?

2.已知总价和数量,怎样求单价?

3.已知工作总量和工作时间,怎样求工作效率?

二、新授教学

(一)导入新课

这些都是我们已经学过的常见的数量关系。这节课,我们继续研究这些数量关系中的一些特征。

(二)教学例1.(课件演示:成正比例的量)

1.一列火车1小时行驶90千米,2小时行驶180千米,3小时行驶270千米,4小时行驶360千米,5小时行驶450千米,6小时行驶540千米,7小时行驶630千米,8小时行驶720千米

2.出示下表,并根据上述内容填表。

《正比例》优秀教案【第三篇】

教学要求:

1.使学生认识正比例关系的意义,理解、掌握成正比例量的变化规律及其特征,能依据判断两种相关联的量成不成正比例关系。

2.进一步培养学生观察、分析、综合和概括等能力,让学生掌握判断两种相关联量成不成正比例关系的方法,培养学生判断、推理的能力。

教学重点:认识正比例关系的意义。

教学难点:掌握成正比例量的变化规律及其特征。

教学过程:

一、复习铺垫

1.说出下列每组数量之间的关系。

(1)速度 时间 路程

(2)单价 数量 总价

(3)工作效率 工作时间 工作总量

2.引入新课。

上面是已经学过的一些常见数量关系,每组数量中,数量之间是有联系的,存在着相依关系。当其中有一个量变化时,另一个量也随着变化,而且这种变化是有规律的,这节课开始,我们就来研究和认识这种变化规律。今天,先认识正比例关系的意义。(板书课题)

二、教学新课

1.教学例1。

出示例l。让学生计算,在课本上填表,并思考能发现什么。指名口答,老师板书填表。让 学 生观察表里两种量变化的数据,思考:

(1)表里有哪两种数量,这两种数量是怎样变化?

(2)路程和时间相对应数值的比的比值各是多少?这两种量变化有什么规律?

引导学生进行讨论,得出:

(1)表里的两种量是所行时间和所行路程。路程和时间是两种相关联的量,(板书:两种相关联的量)路程随着时间的变化而变化。

(2)时间扩大,路程也扩大;时间缩小,路程也缩小。

(3)可以看出它们的变化规律是:路程和时间比的比值总是一定的。(板书:路程和时间比的比值一定)因为路程和时间对应数值比的比值都是50。提问:这里比值50是什么数量?(谁能说出它的数量关系式?想一想,这个式子表示的是什么意思?(把上面板书补充成:速度一定时,路程和时间比的比值一定)

2.教学例2。

出示例2和思考题。要求学生按刚才学习例1的方法学习例2,然后把你学习中的发现综合起来告诉大家。学生观察思考后,指名回答。然后再提问:这两种相关联量的变化规律是什么?枝数比的比值一定)你是怎样发现的?比值1.6是什么数量,你能用数量关系式表示出来吗?谁来说说这个式子表示的意思?(把板书补充成c单价一定时,总价和枝数比的比值一定)

3.概括。

(1)综合例1、例2的共同点。

提问:请大家比较例l和例2,你发现这两个例题有什么共同的地方?(①都有两种相关联的量;②都是一种量随着另一种量变化;③两种量里对应数值的比的比值一定)

(2)概括正比例关系的意义。

像例l、例2里这样的两种相关联的量是怎样的关系呢,请同学们看课本第40页最后一节。说明:根据刚才学习例1、例2时发现的规律,这里有两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比的比值一定,这两种量就叫做成正比例的量,它们之间的关系叫做正比例关系。追问;两种相关联量成不成正比例的关键是什么?(比值是不是一定)提问:如果用x和y表示两种相关联的量,用k表示它们的比值,那么上面这种数量关系式可以怎样写呢? 指出:这个式子表示两种相关联的量x和y,y随着x的变化而变化,它们的比值k是一定的。这时就说x和y成正比例关系。所以,两个量成正比例关系,我们就用式子 =k (一定)来表示。

4.具体认识。

(1)提问:例l里有哪两种相关联的量?这两种量成正比例关系吗,为什么?例2里的两种量是不是成正比例的量?为什么?提问:看两种相关联的量是不是成正比例,关键要看什么?

(2)做练习八第1题。

让学生读题思考。指名依次口答题里的问题。指出:根据上面所说的,要知道两个量是不是成正比例关系,只要先看两种量是不是相关联的量,再看两种量变化时比值是不是一定。如果两种相关联的量变化时比值一定,它们就是成正比例的量,相互之间成正比例关系。

5.教学例3。

出示例3,让学生思考。提问:怎样判断是不是成正比例?哪位同学说说零件总数和时间成不成正比例?为什么?请同学们看一看例3,书上怎样判断的,我们说得对不对。追问:判断两种量是不是成正比例要怎样想?强调:关键是列出关系式,看是不是比值一定。

三、巩固练习

现在,我们根据上面的判断方法来做一些题。

1.做“练一练”第l题。

指名学生口答,说明理由。可以结合写出数量关系式。

2.做“练一练”第2题。

指名口答,并要求说明理由。

3.做练习八第2题。

小黑板出示。让学生把成正比例关系的先勾出来。指名口答,选择几题让学生说一说怎样想的?(必要时写出关系式让学生判断)

4.下列题里有哪两种相关联的量?这两种量成不成正比例?为什么?

一种苹果,买5千克要10元。照这样计算,买15千克要30元。

四、课堂小结

这节课学习了什么内容?正比例关系的意义是什么?用怎样的式子表示y和x这两种相关联的量成正比例?判断两种相关联的量是不是成正比例,关键看什么?

五、家庭作业

练习八第3题。

正比例教学设计【第四篇】

教学要求:

使学生进一步理解和掌握正、反比例中每个概念的含义;更熟练地判断两种相关联的量是不是成比例的量。如果成比例,成什么比例。

进一步提高解决简单实际问题的能力。

教学过程:

提出本课复习题

基本概念的复习

什么叫两种相关联的量?

下面两种相关联的量哪些量成比例?成比例的是成正比例还需成反比例?

什么样的两种量成正比例关系?什么样的两种量成反比例关系?

成正比例关系的量与成反比例关系的量有什么异同点?

应用练习

完成教材97页的“做一做”。

第3题在完成时可先把题中的等式变一变形,像y=8x变成y/x=8;把y=8/y变成xy=8,这样判断起来就方便了。

巩固练习

完成教材99页第6~7题。

全课总结(略)

教学目标:

使学生进上步理解和掌握比和比例的意义与性质。

区别有关易混概念,进上步提高运用所学知识能力,为今后的学习打下良好的基础。

教学过程:

讲述本课复习课题并板书

基本概念的复习

比和比例的意义与性质。

什么叫比?什么叫比例?(就学生所举的例子再让学生说说比和比例中各部分的名称),比的后项为什么不能是0?

比和分数、除法有什么联系?

说说比的基本性质的比例的基本性质?

比的基本性质与比例的基本性质各有什么用处?

看教材95页的归纳整理,并把基本性质栏中的空填上,说说根据什么填写的?

完成教材95的'“做一做”。

结合第3题让学生说说什么叫做解比例?根据是什么?

示比值和化简比。

独立完成教材96页上的题目。

说说求比值与化简比的区别?

(求比值是根据比的意义。用前项除以后项,得到结果是一个数;化简比是根据比的基本性质,把比的前项和后项,同时乘以(或除以)相同的数(0除外),得到的结果是一个最简整数比)。

看书中的表,总结方法。

完成教材96页的“做一做”

比例尺

问题:1)什么叫做比例尺?说说“图距”、“实距”、“比例尺”三者之间的关系。

2)一幢教学大楼平面图的比例尺是1/100,这比例尺表示的是什么意思?

比例尺除写成数字化形式处,还可怎样表示?

完成教材97页上的“做一做”。(理解比例尺实质上是一个比,此比的前项与后项表示的意义是什么。)

练习巩固

完成教材十九页第1~4题。

全课总结(略)

正比例教学设计【第五篇】

教学内容:

九年义务教育六年制小学数学第十二册P63——64

教学目标:

1、能用“描点法”画出表示正比例关系的图像,帮助学生初步认识正比例的图像,进一步认识成正比例的量的变化规律。

2、使学生能根据具有正比例关系的一个量的数值看图估计另一个量的数值。初步体会正比例图像的实际应用,进一步培养观察能力和估计能力。

3、使学生进一步体会数学与日常生活的密切联系,养成积极主动地参与学习活动的习惯。

教学重点:

能认识正比例关系的图像。

教学难点:

利用正比例关系的图像解决实际问题。

设计理念:

数学课堂教学中要让学生亲身经历知识形成的全过程。课堂中向学生动态地展示正比例图像的绘制过程,引导学生能用“描点法”画出表示正比例关系的图像,通过观察帮助学生体会成正比例的量的变化规律,进而掌握利用图像由一个量的数值估计另一个量的数值的方法,使学生能逐步利用正比例关系的图像解决实际问题

教学步骤教师活动学生活动

一、复习激趣1、判断下面两种量能否成正比例,并说明理由。

◎数量一定,总价和单价

◎和一定,一个加数和另一个加数

◎比值一定,比的前项和后项

2、折线统计图具有什么特点?能否把成正比例的两种量之间的关系在折线统计图里表示出来呢?如果能,那又会是什么样子的呢?

学生口答

想象猜测

二、探究新知1、出示例1的表格(略)

根据表中列出的两种量,在黑板上分别画出横轴和纵轴。

你能根据表中的每组数据,在方格图中找一找相应的点,并依次描出这些点吗?

2、学生尝试画出正比例的图像

3、展示、纠错

每个点都应该表示路程和时间的一组对应数值。

4、回答例2图像下面的问题,重点弄清:

(1)说出每个点表示的含义。

(2)为什么所描的点在一条直线上?

(3)你能根据时间(路程)估计所对应的路程(时间)吗?你是怎么看的?

借助直观的图像理解两种量同时扩大或缩小的`变化规律。

学生到黑板上示范

互相评价纠错

学生讨论

说说是怎样想的

三、巩固延伸

1、完成练一练

小玲打字的个数和所用的时间成正比例吗?为什么?

根据表中的数据,描出打字数量和时间所对应的点,再把它们按顺序连起来。

估计小玲5分钟打了多少个字?打750个字要多少分钟?

2、练习十三第4题

先看一看、想一想,再组织讨论和交流。

要求学生说出估计的思考过程。

3、练习十三第5题

先独立填表,再根据表中的数据描出长度和总价所对应的点,把它们按顺序连起来。

组织讨论和交流

4、你能根据生活实际,设计出两种成正比例量关系的一组数据吗?

根据表中的数据,描出所对应的点,再把它们按顺序连起来。

同桌之间相互提出问题并解答。

独立完成,集体评讲

想一想,说一说

画一画,议一议

学生设计,交换检查并相互评价

四、评价反思

这节课你学会了什么?你有哪些收获?还有哪些疑问?

20 924380
");