圆周角教案及反思【优推6篇】

奥运 分享 时间:

圆周角的教案通过直观的图示和实例,帮助学生理解其定义及性质,结合实践活动增强记忆,反思中发现互动环节能有效提升学习兴趣,如何进一步优化教学方式?以下是阿拉网友分享的“圆周角教案及反思”,供您学习参考,喜欢就分享给大家吧!

圆周角教案及反思

圆周角教案及反思 篇1

教学目标

理解圆周角与圆心角的关系,掌握圆周角的性质和直径所对圆周角的特征。

能运用圆周角的性质解决问题,发展学生的合情推理能力和演绎推理能力。

教学重点

圆周角与圆心角的关系,圆周角的性质和直径所对圆周角的特征。

教学难点

合情推理验证圆周角与圆心角的关系。

教学过程

复习引入

回顾圆心角的定义和性质,为学习圆周角打下基础。

新知探究

(1)圆周角的定义:通过对比圆心角的定义,引导学生给出圆周角的定义,并通过辨析概念加深理解。

(2)探索圆周角与圆心角的关系:学生通过动手画圆周角、测量度数、观察分析等方式,探究同弧所对的圆周角与圆心角的关系,并猜想结论。

(3)证明圆周角定理:利用分类讨论和转化的数学思想,引导学生证明圆周角定理,并通过电脑动画展示验证过程。

应用巩固

通过例题讲解和巩固练习,让学生运用圆周角定理解决实际问题,加深对定理的理解和应用。

解决问题

运用所学知识解决情境中的足球问题,让学生感受到数学在生活中的应用价值。

小结

学生自我总结反思本节课的收获,养成良好的`学习习惯。

教学反思

本节课通过复习引入、新知探究、应用巩固、解决问题等环节,使学生逐步掌握了圆周角的定义、性质和定理。在教学过程中,注重引导学生通过观察、比较、分析等方式发现问题、解决问题,培养了学生的合情推理能力和演绎推理能力。但在教学过程中还需注意关注学生的个体差异,让不同层次的学生都能充分参与到数学思维活动中来。同时,在知识的应用过程中还应引导学生注重前后知识的联系,提高学生综合运用知识的能力。

圆周角教案及反思 篇2

教学目标

理解圆周角的概念,掌握圆周角定理,并运用它进行简单的论证和计算。

经历圆周角定理的证明过程,使学生初步学会运用分类讨论和转化的数学思想解决问题。

教学重点

圆周角的概念、圆周角定理及其应用。

教学难点

圆周角定理的探究过程及定理的应用。

教学准备

学生:圆规、量角器、尺子;教师:多媒体课件、活动教具。

教学过程

创设情景,引入新课

通过大屏幕显示学生熟悉的足球射门游戏画面,提出问题:球员射中球门的难易程度与他所处的位置对球门张角的大小有关,引出圆周角的概念。

实践探索,揭示新知

(1)圆周角的概念:学生通过与圆心角的类比、分析、观察得出圆周角的特点,进而概括出圆周角的概念。

(2)活动与探究:画一个圆心角,然后再画同弧所对的圆周角。学生作图、度量、分析、归纳出发现的结论,即同一条弧所对的任意一个圆周角都等于该条弧所对的圆心角的`一半。

(3)推理与论证:教师演示活动教具,提出分类讨论法,引导学生观察圆心与圆周角的位置关系,通过小组讨论、添加辅助线等方式证明圆周角定理。

变式拓展,引出重点

将上述结论改为“在同圆或等圆中,等弧所对的圆周角相等吗?”引出圆周角定理,并强调定理内容。

应用练习,巩固提高

通过范例精析和应用迁移等方式,让学生运用圆周角定理解决实际问题,加深对定理的理解。

总结评价,感悟收获

学生归纳总结本节课的收获,教师点评。

教学反思

本节课通过创设情景、实践探索、推理论证、应用练习等环节,使学生逐步掌握了圆周角的概念和圆周角定理。在教学过程中,注重学生的实践活动和自主探索,通过小组合作、分类讨论等方式激发学生的学习兴趣和求知欲。但在时间分配上还需进一步优化,确保学生有足够的练习时间巩固所学知识。

圆周角教案及反思 篇3

教学目标

理解圆周角的概念,掌握圆周角定理及其推论,并能运用它进行论证和计算。

通过圆周角定理的证明过程,使学生初步学会运用分类讨论和转化的数学思想解决问题。

激发学生对数学的好奇心和求知欲,体验成功的喜悦,建立学习数学的自信心。

教学重点

圆周角的概念、圆周角定理及其应用。

教学难点

圆周角定理的证明及分类讨论。

教学准备

学生:圆规、量角器、尺子;教师:多媒体课件、活动教具。

教学过程

创设情景,引入新课

通过大屏幕显示学生熟悉的足球射门游戏画面,提出问题:球员射中球门的难易程度与他所处的位置有什么关系?引出圆周角的概念。

实践探索,揭示新知

定义圆周角:顶点在圆上,并且两边都与圆相交的角叫做圆周角。

学生通过作图、度量、分析,探究同弧所对的圆周角与圆心角的关系,得出结论:同弧所对的圆周角相等,都等于该条弧所对的圆心角的一半。

教师演示活动教具,引导学生观察圆心与圆周角的位置关系,分类讨论并证明圆周角定理。

变式拓展,引出重点

将结论改为“在同圆或等圆中,等弧所对的圆周角相等吗?”引出圆周角定理的完整表述。

学生思考、默记、熟悉定理内容。

应用练习,巩固提高

通过范例精析和应用迁移,让学生运用圆周角定理解决实际问题。

鼓励学生用多种方法解决问题,发散学生的思维。

总结评价,感悟收获

学生归纳总结本节课的收获,教师点评。

作业布置

完成课后习题,巩固圆周角的概念、定理及其应用。

教学反思

本节课在教学设计上注重学生的实践活动和自主探索。通过创设情景引入新课,激发了学生的学习兴趣。在实践探索环节,学生通过作图、度量、分析等活动,亲身体验了圆周角定理的探究过程,加深了对定理的.理解。同时,教师注重引导学生运用分类讨论和转化的数学思想解决问题,培养了学生的逻辑思维能力。

然而,在教学过程中也存在一些不足。由于内容较多,节奏较快,部分学生对圆周角定理的证明过程理解不够深入。在今后的教学中,应适当调整教学节奏,留给学生更多的思考时间和练习机会。此外,还应加强对学生个体差异的关注,让不同层次的学生都能充分参与到数学思维活动中来。

圆周角教案及反思 篇4

教学目标:

(1)理解圆周角的概念,掌握圆周角的两个特征、定理的内容及简单应用;

(2)培养学生观察、分析、想象、归纳和逻辑推理的能力;

(3)渗透由“特殊到一般”,由“一般到特殊”的数学思想方法。

教学重点:

圆周角的概念和圆周角定理

教学难点:

理解圆周角定理的证明

教学活动设计:

(在教师指导下完成)

(一)圆周角的概念

1、复习提问:

(1)什么是圆心角?

答:顶点在圆心的角叫圆心角。

(2)圆心角的度数定理是什么?

答:圆心角的度数等于它所对弧的度数。

2、引题圆周角:

如果顶点不在圆心而在圆上,则得到如左图的新的角∠acb,它就是圆周角。(如右图)

(演示图形,提出圆周角的定义)

定义:顶点在圆周上,并且两边都和圆相交的角叫做圆周角

3、概念辨析:

教材p93中1题:判断下列各图形中的是不是圆周角,并说明理由。学生归纳:一个角是圆周角的条件:

①顶点在圆上;

②两边都和圆相交。

(二)圆周角的定理

1、提出圆周角的度数问题

问题:圆周角的度数与什么有关系?

经过电脑演示图形,让学生观察图形、分析圆周角与圆心角,猜想它们有无关系。引导学生在建立关系时注意弧所对的圆周角的三种情况:圆心在圆周角的一边上、圆心在圆周角内部

(1)当圆心在圆周角的一边上时,圆周角与相应的圆心角的关系:(演示图形)观察得知圆心在圆周角上时,圆周角是圆心角的一半。

提出必须用严格的数学方法去证明。

(2)其它情况,圆周角与相应圆心角的关系:

当圆心在圆周角外部时(或在圆周角内部时)引导学生作辅助线将问题转化成圆心在圆周角一边上的情况,从而运用前面的结论,得出这时圆周角仍然等于相应的圆心角的`结论。

证明:作出过c的直径(略)

圆周角定理:一条弧所对的

周角等于它所对圆心角的一半。

说明:这个定理的证明我们分成三种情况。这体现了数学中的分类方法;在证明中,后两种都化成了第一种情况,这体现数学中的化归思想。(对a层学生渗透完全归纳法)

(三)定理的应用

1、例题:如图oa、ob、oc都是圆o的半径,∠aob=2∠boc。求证:∠acb=2∠bac

让学生自主分析、解得,教师规范推理过程。

说明:

①推理要严密;

②符号“”应用要严格,教师要讲清

2、巩固练习:

(1)如图,已知圆心角∠aob=100°,求圆周角∠acb、∠adb的度数?

(2)一条弦分圆为1:4两部分,求这弦所对的圆周角的度数?说明:一条弧所对的圆周角有无数多个,却这条弧所对的圆周角的度数只有一个,但一条弦所对的圆周角的度数只有两个。

(四)总结

知识:

(1)圆周角定义及其两个特征;

(2)圆周角定理的内容。在思想方法:一种方法和一种思想:

在证明中,运用了数学中的分类方法和“化归”思想。分类时应作到不重不漏;化归思想是将复杂的问题转化成一系列的简单问题或已证问题。

(五)作业教材p100中习题a组6,7,8。

教学反思

本节课是在圆的基本概念和性质以及圆心角概念和性质的基础上,对圆周角的性质进行探索,圆周角性质在圆的有关说理、作图、计算中有着广泛的应用,也是学习圆的后续知识的重要预备知识,在教材中起着承上启下的作用。同时,圆周角性质也是说明线段相等,角相等的重要依据之一。

本节课的重点是圆周角的概念和经历探索圆周角性质的过程,难点是合情推理验证圆周角与圆心角的关系。在本节课的教学中,学生对圆周角的概念和“同弧所对的圆周角相等”这一性质较容易掌握,理解起来问题也不大。而对圆周角与圆心角的关系理解起来则相对困难,特别是圆心在圆周角内部、圆心在圆周角外部这两种情况,因此在教学过程中要着重引导学生对这一知识的探索与理解。还有些学生在应用知识解决问题的过程中往往会忽略同弧的问题,在教学过程中要对此予以足够的强调,借助多媒体加以突出。此外,在知识的应用过程中还应引导学生注重前后知识的联系,提高学生综合运用知识的能力,培养学生对数学的应用意识、创新意识。

本节课我设计了问题情境——自主探究——拓展应用的课堂教学模式,以学生探究为主,配合多媒体辅助教学。在教学过程中,教师将问题式教学法,启发式教学法,探究式教学法,情境式教学法,互动式教学法等多种教学方法融为一体,注重教学与生活的联系,创设富有挑战性的问题情境,引导学生用数学的眼光看问题,发现规律,验证猜想。教学中注重学生的个体差异,让不同层次的学生充分参与

到数学思维活动中来,充分发挥学生的主体作用。运用适度的激励,帮助学生认识自我,建立自信,不仅“学会”,而且“会学”“,乐学”。引导学生采用动手实践,自主探究,合作交流的学习方法进行学习,使学生在观察、实践、问题转化等数学活动中充分体验探索的快乐,发现新知,发展能力。与此同时,教师通过适时的点拨、精讲,使观察、猜想、实践、归纳、推理、验证贯穿于整个学习过程之中。本节课不足的是,由于内容较多,节奏有点快,可能有部分学生掌握的不够好,还需点时间巩固练习。

圆周角教案及反思 篇5

教学目标

理解圆周角的概念,掌握圆周角定理。

经历圆周角定理的证明过程,体会类比、分类讨论等数学方法的应用。

培养学生的探究意识和合作交流能力。

教学重点

圆周角的概念和圆周角定理。

教学难点

圆周角定理的证明及分类讨论。

教学准备

多媒体课件、圆规、量角器。

教学过程

复习引入

回顾圆心角的概念和性质。

提出问题:如果角的顶点在圆上,两边都与圆相交,这个角叫什么角?引出圆周角的'概念。

新知探究

学生动手画圆周角,观察并总结圆周角的特点。

通过度量工具,探究同弧所对的圆周角与圆心角的关系。

引导学生分类讨论圆心与圆周角的位置关系,并证明圆周角定理。

例题讲解

通过例题让学生熟悉圆周角定理的应用。

强调解题步骤和书写规范。

巩固练习

提供不同难度的练习题,让学生巩固所学知识。

鼓励学生小组讨论,共同解决问题。

课堂小结

总结本节课的知识点和学习方法。

布置课后作业。

教学反思

本节课在教学过程中注重学生的动手实践和合作交流。通过复习引入,帮助学生建立了新旧知识之间的联系。在新知探究环节,学生通过动手画角、度量、观察等活动,加深了对圆周角概念的理解。同时,通过分类讨论和证明过程,学生初步掌握了圆周角定理及其应用。

然而,在教学过程中也发现了一些问题。部分学生对分类讨论的思想理解不够深入,导致在证明过程中遇到困难。此外,由于课堂时间有限,部分学生的练习机会不足。在今后的教学中,应加强对分类讨论等数学方法的讲解和训练,同时适当调整课堂节奏,留给学生更多的练习和思考时间。此外,还应注重培养学生的探究意识和合作交流能力,让学生在解决问题的过程中体验成功的喜悦。

圆周角教案及反思 篇6

教材依据

圆周角是新课标人教版九年级数学上册第二十四章第一节圆的有关性质的重要内容,本节内容依据新人教版九年级《课程标准》和《教师教学用书》及《初中数学新教材详解》。

设计思想

本节课是在学习了圆心角的定义、性质定理和推论的基础上,由生活实例引出圆周角,类比圆心角认识圆周角,类比圆心角的性质探究圆周角定理,精编例题及习题对本节内容进行迁移应用。

在教学过程中本着“以人为本,让课堂变为学堂,把时间和空间更多地留给学生”为原则,注重学生的实践活动,通过让学生作图、度量、分析、猜想、验证得出结论,教学过程中充分利用学生已有的认知水平,由浅入深、逐层递进,并能适时地应用直观教具引导学生运用分类讨论及转化的数学思想对圆周角定理进行证明,化解本节课的难点。这样学生易于接受新知识,也能很快地理解并掌握圆周角定理的内容,同时给学生自主探索留有很大空间,让学生在实践探究、合作交流活动中,亲身体验应用数学的乐趣和成功的喜悦,发展学生的思维,培养学生的多种学习能力。

教学目标

1.知识与技能

(1)理解圆周角的概念,掌握圆周角定理,并运用它进行简单的论证和计算。

(2)经历圆周角定理的证明,使学生初步学会运用分类讨论的数学思想和转化的数学思想解决问题。

2.过程与方法

采用“活动与探究”的学习方法,由感性到理性、由简单到复杂、由特殊到一般的思维过程研究新知识,引导学生理解知识的发生发展过程,并使学生能应用所学知识解决简单的实际问题。

3.情感、态度与价值观

通过学生探索圆周角定理,自主学习、合作交流的学习过程,激发学生的好奇心和求知欲,并在运用数学知识解答问题的活动中获取成功的体验,建立学习数学的自信心。

教学重点

圆周角的概念、圆周角定理及应用。

教学难点

圆周角定理的探究过程及定理的应用。

教学准备

学生:圆规、量角器、尺子

教师:多媒体课件、活动教具

教学过程

一、 创设情景,引入新课

大屏幕显示学生熟悉的画面(足球射门游戏)

足球场有句顺口溜:“冲向球门跑,越近就越好;歪着球门跑,射点要选好。”其中蕴藏了一定的数学道理,学习了本节课,我们就可以解释其中的道理。

二、实践探索,揭示新知

(一)圆周角的概念

在射门游戏中,球员射中球门的难易程度与他所处的位置B对球门AC的张角∠ABC有关.(教师出示图片,提出问题)

图中∠ABC是圆心角吗?什么是圆心角?图中∠ABC有什么特点?

(学生通过与圆心角的类比、分析、观察得出∠ABC的特点,进而概括出圆周角的概念,教师引导并板书)

定义:顶点在圆上,并且两边都与圆相交的角叫做圆周角。

概念辨析:

判断下列各图形中的角是不是圆周角,并说明理由。(图略)

(通过概念辨析,让学生理解圆周角的定义,提高学生的语言表达能力,教师强调知识要点)

强调:圆周角必须具备的两个条件:①顶点在圆上;②两边都与圆相交.

(二)圆周角定理

1.提出问题,引发思考

类比圆心角的结论:同弧或等弧所对的圆心角相等。提出本节课研究的问题:同弧或等弧所对的圆周角相等吗?为了搞清这个问题,我们可以先研究:同弧所对的圆心角和圆周角的关系。

2.活动与探究

画一个圆心角,然后再画同弧所对的圆周角。你能画多少个圆周角? 用量角器量一量这些圆周角及圆心角的`度数,你有何发现呢?

(教师提出问题,学生作图、度量、分析、归纳出发现的结论。)

结论:(1)同一条弧所对的圆周角有无数个,同弧所对的任意一个圆周角都相等。

(2)同一条弧所对的圆周角等于它所对的圆心角的一半.

由上述操作可以看出:同一条弧所对的任意一个圆周角都等于该条弧所对的圆心角的一半。

(学生通过实践探究,讨论概括出结论,教师点评)

3.推理与论证

(1)教师演示活动教具,一条弧所对的圆心角只有一个,所对的圆周角有无数个,我们没有办法一一论证,提出本节课研究方法:分类讨论法。

(教师演示,引导学生观察圆心与圆周角的位置关系,学生观察、小组交流,最后得出结论,教师出示圆心和圆周角的三种位置关系图片)

(2)分类讨论,证明结论 ① 当圆心在圆周角的一条边上时,如何证明?(从特殊情况入手,学生通过观察、分析、讨论,证明所发现的结论,教师鼓励学生看清此数学模型。)

②另外两种情况如何证明,可否转化成第一种情况呢?

(学生采取小组合作的学习方式进行探索发现,教师巡视指导,启发并引导学生,通过添加辅助线,将问题进行转化,学生写出证明过程,并讨论归纳出结论,教师做出点评)

结论:在同圆中,同弧所对的圆周角相等,都等于该条弧所对圆心角的一半

4.变式拓展,引出重点

将上述结论改为“在同圆或等圆中,等弧所对的圆周角相等吗?

(学生思考、推理、讨论、总结出圆周角定理,教师板书)

圆周角定理: 在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。

强调:

(1)定理的适用范围:同圆或等圆

(2)同弧或等弧所对的圆周角相等

(3)同弧或等弧所对的圆周角等于它所对圆心角的一半

(教师强调圆周角定理的内容,学生思考、默记、熟悉定理,加深对定理的理解)

三、应用练习,巩固提高

1.范例精析:

例:如图,在⊙O中,∠CBD=30° ,∠BDC=20°,求∠A(图略)

(鼓励学生用多种方法解决问题,发散学生的思维,培养学生良好的思维品质,让学生书写推力计算过程,教师补充、点评、并和学生一起归纳解法。两种解法分别应用了圆周角定理中的两个结论,进一步对本节课的重点知识熟练深化,同时又培养了学生规范的书写表达能力)

2.应用迁移:

(1)比比看谁算得快:(图略)

(本小题既可巩固圆周角定理,又可培养学生的竞争意识以适应时代的要求,同时对回答问题积极准确的学生提出表扬,激发学生的学习积极性)

(2)生活中的数学

如图.在足球比赛中,甲带球向对方球门PQ进攻,当他带球冲到A点时,同伴乙已经冲到B点,这时甲是直接射门好,还是将球传给乙,让乙射门好﹙仅从射门角度考虑﹚(图略)

(选用学生熟悉的生活材料,让学生通过合作交流,讨论找出合理的解答方法,通过本小题的练习,使学生体味到生活离不开数学,从而激发学生应用数学的意识)

四、总结评价,感悟收获

通过本节课的学习你有哪些收获?(学生归纳总结,老师点评)

知识:

(1)圆周角的定义;

(2)圆周角定理。

能力:观察、操作、分析、归纳、表达等能力.

思想方法:分类讨论思想、转化思想、类比思想、数形结合思想、

五、作业设计,查漏补缺

1.课本习题:,2,3,,

2.在⊙O中,圆心角∠AOB=70°,点C是⊙O上异于A、B的一点,求圆周角∠AOB的度数。

3.生活中的数学:监控器的监控范围是65度,圆形的博物馆内需要安装几盏才能全方位监控?(图略)

(设计课本习题与课外拓展作业,不仅可以使学生对本节课的知识加以巩固、提高和查漏补缺,而且让学生会用数学的眼光和头脑去观察和思考世界,达到学以致用)

教学反思

成功之处:本节课内容丰富,结构合理,设计精细。教学时能根据学生实际遵循认知规律,由浅入深,循序渐进,及时了解学生的学习情况,灵活调整教学内容。能适时的用教材又不拘泥于教材,挖掘教材的多种功能,在教学结构的安排上也体现了新课标、新理念,重视学生自主学习、自主探究、合作交流、主动地观察与思考,各个环节衔接紧密、合理、流畅,教学效果比较理想。

不足之处:学生不易理解用分类讨论思想证明圆周角定理,在后面的教学中逐步让学生了解分类讨论思想在解题时的应用。另外学生语言表达的准确性还需不断加强。

20 4419745
");