高中数学说课稿精编4篇

网友 分享 时间:

【路引】由阿拉题库网美丽的网友为您整理分享的“高中数学说课稿精编4篇”文档资料,以供您学习参考之用,希望这篇范文对您有所帮助,喜欢就复制下载支持吧!

高中数学说课稿1

一、说教材

1、教材的地位和作用

“棱锥”这节教材是《立体几何》的第节,它是在学生学习了直线和平面的基础知识,掌握了棱柱的概念和性质的基础上进一步研究多面体的又一常见几何体。它既是线面关系的具体化,又为以后进一步学习棱台的概念和性质奠定了基础。因此掌握好棱锥的概念和性质尤其是正棱锥的概念和性质意义非常重要,同时,这节课也是进一步培养高一学生的空间想象能力和逻辑思维能力的重要内容。

2、教学内容

本节课的主要教学内容是棱锥、正棱锥的概念和性质以及运用正棱锥的性质解决有关计算和证明问题。通过观察具体几何体模型引出棱锥的概念;通过棱柱与棱锥类比引入正棱锥的概念;通过对具体问题的研究,逐步探索和发现正棱锥的性质,从而找到解决正棱锥问题的一般数学思想方法,这样做,学生会感到自然,好接受。对教材的内容则有所增减,处理方式也有适当改变。

3、教学目标

根据教学大纲的要求,本节教材的特点和高一学生对空间图形的认知特点,我把本节课的教学目标确定为:

(1)知识目标:使学生理解棱锥以及正棱锥的概念,掌握正棱锥的性质,领会应用正棱锥的性质解题的一般方法初步学会应用性质解决相关问题。

(2)能力目标:通过对正棱锥中相关元素的相互转化的研究,培养学生知识迁移的能力及数学表达能力,提高学生的空间想象能力以及空间问题向平面转化的能力。

(3)德育、美育目标:通过教学进行辩证唯物主义思想教育,数学审美教育,提高学生学习数学的积极性。

4、教学重点,难点,关键

对于高一学生来说,空间观念正逐步形成。而实际生活中,遇到的往往是正棱锥,它的性质用处较多。因此,本节课的教学重点是通过对具体问题的分析和探索,自然而然地引出正棱锥的最重要性质及其实质;而如何将空间问题转化为平面问题来解决?本节课则通过抓住正棱锥中的基本图形这一难点实现突破,教学的关键是正确认识正棱锥的线线,线面垂直关系。

二、说教法

由于本节课安排在立体几何学习的中期,正是进一步培养学生形成空间观念和提高学生逻辑思维能力的最佳时机,因此,在教学中,一方面通过电教手段,把某些概念,性质或知识关键点制成了投影片,既节省时间,又增加其直观性和趣味性,起到事半功倍的作用;另一方面,在教学中并没有采取把正棱锥性质同时全部讲授给学生的做法,而是通过具体问题的分析与处理,将正棱锥最重要的性质这一知识点发现的全过程逐步展现给学生,让学生体会知识发生、发展的过程及其规律,从而提高学生分析和解决实际问题的能力。

因此我把本节的教法确定为:类比联想、研究探讨、直观想象、启发诱导、建立模型、学会应用、发展潜能、形成能力、提高素质的启发式教学。

三、说学法

教学矛盾的主要方面是学生的学。学是中心,会学是目的。因此,在教学中要不断指导学生学会学习。根据立体几何教学的特点,这节课主要是教给学生“动手做,动脑想;严格证,多训练,勤钻研。”的研讨式学习方法。这样做,增加了学生主动参与的机会,增强了参与意识,教给学生获取知识的途径;思考问题的方法。使学生真正成为教学的主体。也只有这样做,才能使学生“学”有新“思”,“思”有所“得”,“练”有所“获”。学生才会逐步感到数学美,会产生一种成功感,从而提高学生学习数学的兴趣;也只有这样做,才能适应素质教育下培养“创新型”人才的需要。

四、说教学过程

高中数学《棱锥的概念和性质》说课稿下载。rar

上面内容就是差异网为您整理出来的4篇《高中数学说课稿》,能够帮助到您,是差异网最开心的事情。

高中数学说课稿2

尊敬的各位专家、评委:

下午好!

我的抽签序号是___,今天我说课的课题是《______》第__课时。 我尝试利用新课标的理念来指导教学,对于本节课,我将以“教什么,怎么教,为什么这样教”为思路,从教材分析、教法学法分析、教学过程分析和评价分析四方面来谈谈我对教材的理解和教学的设计,敬请各位专家、评委批评指正。

一、教材分析

(一)地位与作用

数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。一方面数列作为一种特殊的函数与函数思想密不可分;另一方面学习数列也为进一步学习数列的极限等内容做好准备。而等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。同时等差数列也为今后学习等比数列提供了学习对比的依据。

(二)学情分析

(1)学生已熟练掌握_________________。

(2)学生的知识经验较丰富,具备了教强的抽象思维能力和演绎推理能力。

(3)学生思维活泼,积极性高,已初步形成对数学问题的合作探究能力。

(4) 学生层次参次不齐,个体差异比较明显。

二、目标分析

新课标指出“三维目标”是一个密切联系的有机整体,应该以获得知识与技能的过程,同时成为学会学习和正确价值观。这要求我们在教学中以知识技能的培养为主线,透情感态度与价值观,并把这两者充分体现在教学过程中,新课标指出教学的主体是学生,因此目标的制定和设计必须从学生的角度出发,根据__在教材内容中的地位与作用,结合学情分析,本节课教学应实现如下教学目标:

(一)教学目标

(1)知识与技能

使学生理解函数单调性的概念,初步掌握判别函数单调性的方法;。

(2)过程与方法

引导学生通过观察、归纳、抽象、概括,自主建构单调增函数、单调减函数等概念;能运用函数单调性概念解决简单的问题;使学生领会数形结合的数学思想方法,培养学生发现问题、分析问题、解决问题的能力。

(3)情感态度与价值观

在函数单调性的学习过程中,使学生体验数学的科学价值和应用价值,培养学生善于观察、勇于探索的良好习惯和严谨的科学态度。

(二)重点难点

本节课的教学重点是________,教学难点是_________。

三、教法、学法分析

(一)教法

基于本节课的内容特点和高二学生的年龄特征,按照临沂市高中数学“三五四”课堂教学策略,采用探究――体验教学法为主来完成教学,为了实现本节课的教学目标,在教法上我采取了:

1、通过学生熟悉的实际生活问题引入课题,为概念学习创设情境,拉近数学与现实的距离,激发学生求知欲,调动学生主体参与的积极性.

2、在形成概念的过程中,紧扣概念中的关键语句,通过学生的主体参与,正确地形成概念.

3、在鼓励学生主体参与的同时,不可忽视教师的主导作用,要教会学生清晰的思维、严谨的推理,并顺利地完成书面表达.

(二)学法在学法上我重视了: 1、让学生利用图形直观启迪思维,并通过正、反例的构造,来完成从感性认识到理性思维的质的飞跃。 2、让学生从问题中质疑、尝试、归纳、总结、运用,培养学生发现问题、研究问题和分析解决问题的能力。

四、教学过程分析

(一)教学过程设计

教学是一个教师的“导”,学生的“学”以及教学过程中的“悟”构成的和谐整体。教师的“导”也就是教师启发、诱导、激励、评价等为学生的学习搭建支架,把学习的任务转移给学生,学生就是接受任务,探究问题、完成任务。如果在教学过程中把“教与学”完美的结合也就是以“问题”为核心,通过对知识的发生、发展和运用过程的演绎、解释和探究来组织和推动教学。

(1)创设情境,提出问题。 新课标指出:“应该让学生在具体生动的情境中学习数学”。在本节课的教学中,从我们熟悉的生活情境中提出问题,问题的

设计改变了传统目的明确的设计方式,给学生最大的思考空间,充分体现学生主体地位。

(2)引导探究,建构概念。 数学概念的形成来自解决实际问题和数学自身发展的需要.但概念的高度抽象,造成了难懂、难教和难学,这就需要让学生置身于符合自身实际的学习活动中去,从自己的经验和已有的知识基础出发,经历“数学化”、“再创造”的活动过程.

(3)自我尝试,初步应用。 有效的数学学习过程,不能单纯的模仿与记忆,数学思想的领悟和学习过程更是如此。让学生在解题过程中亲身经历和实践体验,师生互动学习,生生合作交流,共同探究.

(4)当堂训练,巩固深化。 通过学生的主体参与,使学生深切体会到本节课的主要内容和思想方法,从而实现对知识识的再次深化。

(5)小结归纳,回顾反思。 小结归纳不仅是对知识的简单回顾,还要发挥学生的主体地位,从知识、方法、经验等方面进行总结。我设计了三个问题:(1)通过本节课的学习,你学到了哪些知识?(2)通过本节课的学习,你最大的体验是什么?(3)通过本节课的学习,你掌握了哪些技能?

(二)作业设计

作业分为必做题和选做题,必做题对本节课学生知识水平的反馈,选做题是对本节课内容的延伸与,注重知识的延伸与连贯,强调学以致用。通过作业设置,使不同层次的学生都可以获得成功的喜悦,看到自己的潜能,从而激发学生饱满的学习兴趣,促进学生自主发展、合作探究的学习氛围的形成.

我设计了以下作业: (1)必做题 (2)选做题

(三)板书设计 板书要基本体现整堂课的内容与方法,体现课堂进程,能简明扼要反映知识结构及其相互联系;能指导教师的教学进程、引导学生探索知识;通过使用幻灯片辅助板书,节省课堂时间,使课堂进程更加连贯。

五、评价分析

学生学习的结果评价当然重要,但是更重要的是学生学习的过程评价。我采用及时点评、延时点评与学生互评相结合,全面考查学生在知识、思想、能力等方面的发展情况,在质疑探究的过程中,评价学生是否有积极的情感态度和顽强的理性精神,在概念反思过程中评价学生的归纳猜想能力是否得到发展,通过巩固练习考查学生对____是否有一个完整的集训,并进行及时的调整和补充。 以上就是我对本节课的理解和设计,敬请各位专家、评委批评指正。 谢谢!

高中数学说课稿3

一、教材分析:

集合概念及其基本理论,称为集合论,是近、现代数学的一个重要的基础,一方面,许多重要的数学分支,都建立在集合理论的基础上。另一方面,集合论及其所反映的数学思想,在越来越广泛的领域种得到应用。

二、目标分析:

教学重点、难点

重点:集合的含义与表示方法。

难点:表示法的恰当选择。

教学目标

1、知识与技能

(1)通过实例,了解集合的含义,体会元素与集合的属于关系;

(2)知道常用数集及其专用记号;

(3)了解集合中元素的确定性。互异性。无序性;

(4)会用集合语言表示有关数学对象;

2、 过程与方法

(1)让学生经历从集合实例中抽象概括出集合共同特征的过程,感知集合的含义。

(2)让学生归纳整理本节所学知识。

3、 情感、态度与价值观

使学生感受到学习集合的必要性,增强学习的积极性。

三、教法分析

1、 教学方法:学生通过阅读教材,自主学习。思考。交流。讨论和概括,从而更好地完成本节课的教学目标。

2、 教学手段:在教学中使用投影仪来辅助教学。

四、过程分析

(一)创设情景,揭示课题

1、教师首先提出问题:

(1)介绍自己的家庭、原来就读的学校、现在的班级。

(2)问题:像"家庭"、"学校"、"班级"等,有什么共同特征?

引导学生互相交流。 与此同时,教师对学生的活动给予评价。

2、活动:

(1)列举生活中的集合的例子;

(2)分析、概括各实例的共同特征

由此引出这节要学的内容。

设计意图:既激发了学生浓厚的学习兴趣,又为新知作好铺垫

(二)研探新知,建构概念

1、教师利用多媒体设备向学生投影出下面7个实例:

(1)1-20以内的所有质数;

(2)我国古代的四大发明;

(3)所有的安理会常任理事国;

(4)所有的正方形;

(5)海南省在20xx年9月之前建成的所有立交桥;

(6)到一个角的两边距离相等的所有的点;

(7)国兴中学20xx年9月入学的高一学生的全体。

2、教师组织学生分组讨论:这7个实例的共同特征是什么?

3、每个小组选出--位同学发表本组的讨论结果,在此基础上,师生共同概括出7个实例的特征,并给出集合的含义。

一般地,指定的某些对象的全体称为集合(简称为集)。集合中的每个对象叫作这个集合的元素。

4、教师指出:集合常用大写字母A,B,C,D,…表示,元素常用小写字母…表示。

设计意图:通过实例让学生感受集合的概念,激发学习的兴趣,培养学生乐于求索的精神

(三)质疑答辩,发展思维

1、教师引导学生阅读教材中的相关内容,思考:集合中元素有什么特点?并注意个别辅导,解答学生疑难。使学生明确集合元素的三大特性,即:确定性。互异性和无序性。只要构成两个集合的元素是一样的,我们就称这两个集合相等。

2、教师组织引导学生思考以下问题:

判断以下元素的全体是否组成集合,并说明理由:

(1)大于3小于11的偶数;

(2)我国的小河流。

让学生充分发表自己的建解。

3、 让学生自己举出一些能够构成集合的例子以及不能构成集合的例子,并说明理由。教师对学生的学习活动给予及时的评价。

4、教师提出问题,让学生思考

(1)如果用A表示高一(3)班全体学生组成的集合,用表示高一(3)班的一位同学,是高一(4)班的一位同学,那么与集合A分别有什么关系?由此引导学生得出元素与集合的关系有两种:属于和不属于。

如果是集合A的元素,就说属于集合A,记作。

如果不是集合A的元素,就说不属于集合A,记作。

(2)如果用A表示"所有的安理会常任理事国"组成的集合,则中国。日本与集合A的关系分别是什么?请用数学符号分别表示。

(3)让学生完成教材第6页练习第1题。

5、教师引导学生回忆数集扩充过程,然后阅读教材中的相交内容,写出常用数集的记号。并让学生完成习题组第1题。

6、教师引导学生阅读教材中的相关内容,并思考。讨论下列问题:

(1)要表示一个集合共有几种方式?

(2)试比较自然语言。列举法和描述法在表示集合时,各自有什么特点?适用的对象是什么?

(3)如何根据问题选择适当的集合表示法?

使学生弄清楚三种表示方式的优缺点和体会它们存在的必要性和适用对象。

设计意图:明确集合元素的三大特性,使学生弄清楚三种表示方式的优缺点,从而突破难点。

(四)巩固深化,反馈矫正

教师投影学习:

(1)用自然语言描述集合{1,3,5,7,9};

(2)用例举法表示集合

(3)试选择适当的方法表示下列集合:教材第6页练习第2题。

设计意图:使学生及时巩固所学新知,体会三种表示方式存在的必要性和适用对象(五)归纳小结,布置作业

小结:在师生互动中,让学生了解或体会下例问题:

1、本节课我们学习了哪些知识内容?

2、你认为学习集合有什么意义?

3、选择集合的表示法时应注意些什么?

设计意图:通过回顾,对概念的发生与发展过程有清晰的认识,回顾集合元素的三大特性及集合的三种表示方式。

作业:

1、课后书面作业:第13页习题组第4题。

2、 元素与集合的关系有多少种?如何表示?类似地集合与集合间的关系又有多少种呢?如何表示?请同学们通过预习教材。

高一数学说课稿大全4

一、说教材

1、教材的地位、作用及编写意图

《对数函数》出现在职业高中数学第一册第四章第四节。函数是高中数学的核心,对数函数是函数的重要分支,对数函数的知识在数学和其他许多学科中有着广泛的应用;学生已经学习了对数、反函数以及指数函数等内容,这为过渡到本节的学习起着铺垫作用;"对数函数"这节教材,指出对数函数和指数函数互为反函数,反映了两个变量的相互关系,蕴含了函数与方程的数学思想与数学方法,是以后数学学习中不可缺少的部分,也是高考的必考内容。

2、教学目标的确定及依据。

依据教学大纲和学生获得知识、培养能力及思想教育等方面的要求:我制定了如下教育教学目标:

(1)知识目标:理解对数函数的概念、掌握对数函数的图象和性质。

(2)能力目标:培养学生自主学习、综合归纳、数形结合的能力。

(3)德育目标:培养学生对待知识的科学态度、勇于探索和创新的精神。

(4)情感目标:在民主、和谐的教学气氛中,促进师生的情感交流。

3、教学重点、难点及关键

重点:对数函数的概念、图象和性质;

难点:利用指数函数的图象和性质得到对数函数的图象和性质;

关键:抓住对数函数是指数函数的反函数这一要领。

二、说教法

大部分学生数学基础较差,理解能力,运算能力,思维能力等方面参差不齐;同时学生学好数学的自信心不强,学习积极性不高。针对这种情况,在教学中,我引导学生从实例出发启发指数函数的定义,在概念理解上,用步步设问、课堂讨论来加深理解。在对数函数图像的画法上,我借助多媒体,演示作图过程及图像变化的动画过程,从而使学生直接地接受并提高学生的学习兴趣和积极性,很好地突破难点和提高教学效率。

三、说学法

教给学生方法比教给学生知识更重要,本节课注重调动学生积极思考、主动探索,尽可能地增加学生参与教学活动的时间和空间,我进行了以下学法指导:

(1)对照比较学习法:学习对数函数,处处与指数函数相对照。

(2)探究式学习法:学生通过分析、探索、得出对数函数的定义。

(3)自主性学习法:通过实验画出函数图象、观察图象自得其性质。

(4)反馈练习法:检验知识的应用情况,找出未掌握的内容及其差距。

这样可发挥学生的主观能动性,有利于提高学生的各种能力。

四、说教学程序

1、复习导入

(1)复习提问:什么是对数?如何求反函数?指数函数的图象和性质如何?学生回答,并利用课件展示一下指数函数的图象和性质。

设计意图:设计的提问既与本节内容有密切关系,又有利于引入新课,为学生理解新知识清除了障碍,有意识地培养学生分析问题的能力。

2)导言:指数函数有没有反函数?如果有,如何求指数函数的反函数?它的反函数是什么?

设计意图:这样的导言可激发学生求知欲,使学生渴望知道问题的答案。

2、认定目标(出示教学目标)

3、导学达标

按"教师为主导,学生为主体,训练为主线"的原则,安排师生互动活动。

(1)对数函数的概念

引导学生从对数式与指数式的关系及反函数的概念进行分析并推导出,指数函数有反函数,并且y=ax(a>0且a≠1)的反函数是y=logax,见课件。把函数y=logax叫做对数函数,其中a>0且a≠1.从而引出对数函数的概念,展示课件。

设计意图:对数函数的概念比较抽象,利用已经学过的知识逐步分析,这样引出对数函数的概念过渡自然,学生易于接受。因为对数函数是指数函数的反函数,让学生比较它们的定义域、值域、对应法则及图象间的关系,培养学生参与意识,通过比较充分体现指数函数及对数函数的内在联系。

(2)对数函数的图象

提问:同指数函数一样,在学习了函数的定义之后,我们要画函数的图象,应如何画对数函数的图象呢?让学生思考并回答,用描点法画图。教师肯定,我们每学习一种新的函数都可以根据函数的解析式,列表、描点画图。再考虑一下,我们还可以用什么方法画出对数函数的图象呢?

让学生回答,画出指数函数关于直线y=x对称的图象,就是对数函数的图象。

教师总结:我们画对数函数的图象,既可用描点法,也可用图象变换法,下边我们利用两种方法画对数函数的图象。

方法一(描点法)首先列出x,y(y=log2x,y=logx)值的对应表,因为对数函数的定义域为x>0,因此可取x=···,,,1,2,4,8···,请计算对应的y值,然后在坐标系内描点、画出它们的图象。

方法二(图象变换法)因为对数函数和指数函数互为反函数,图象关于直线y=x对称,所以只要画出y=ax的图象关于直线y=x对称的曲线,就可以得到y=logax.的图象。学生动手做实验,先描出y=2x的图象,画出它关于直线y=x对称的曲线,它就是y=log2x的图象;类似的从y=()x的图象画出y=logx的图象,再出示课件,教师加以解释。

设计意图:用这种对称变换的方法画函数的图象,可以加深和巩固学生对互为反函数的两个函数之间的认识,便于将对数函数的图象和性质与指数函数的图象和性质对照,但使用描点法画函数图象更为方便,两种方法可同时进行,分析画法之后,可让学生自由选择画法。这样可以充分调动学生自主学习的积极性。

(3)对数函数的性质

在理解对数函数定义的基础《》上,掌握对数函数的图象和性质是本节的重点,关键在于抓住对数函数是指数函数的反函数这一要领,讲对数函数的性质,可先在同一坐标系内画出上述两个对数函数的图象,根据图象让学生列表分析它们的图象特征和性质,然后出示课件,教师补充。作了以上分析之后,再分a>1与0

设计意图:这种__既严谨又直观易懂,还能让学生主动参与教学过程,对培养学生的创新能力有帮助,学生易于接受易于掌握,而且利用表格,可以突破难点。

由于对数函数和指数函数互为反函数,它们的定义域与值域正好互换,为了揭示这两种函数之间的内在联系,列出指数函数与对数函数对照表(见课件)

设计意图:通过比较对照的方法,学生更好地掌握两个函数的定义、图象和性质,认识两个函数的内在联系,提高学生对函数思想方法的认识和应用意识。

4、巩固达标(见课件)

这一训练是为了培养学生利用所学知识解决实际问题的能力,通过这个环节学生可以加深对本节知识的理解和运用,并从讲解过程中找出所涉及的知识点,予以总结。充分体现"数形结合"和"分类讨论"的思想。

5、反馈练习(见课件)

习题是对学生所学知识的反馈过程,教师可以了解学生对知识掌握的情况。

6、归纳总结(见课件)

引导学生对主要知识进行回顾,使学生对本节有一个整体的把握,因此,从三方面进行总结:对数函数的概念、对数函数的图象和性质、比较对数值大小的方法。

7、课外作业:

(1)完成P782、3题

(2)当底数a>1与0

20 589235
");