初中数学分式教案精编4篇
【路引】由阿拉题库网美丽的网友为您整理分享的“初中数学分式教案精编4篇”文档资料,以供您学习参考之用,希望这篇范文对您有所帮助,喜欢就复制下载支持吧!
初中数学分式教案1
分式(2课时)
上课时间 年 月 日星期
一、复习要点
1、分式的通分和约分
2、分式的定义域
3、分式的化简和求值
二、复习过程
1、求代数式的值:①化 ②代 ③算
例:①已知x+y=5;xy=3,求x3y+2x2y2+xy3
②已知a=-1,b=-3,c=1,求 a2b--3abc
③已知a= 求 ÷( - )+
④已知x= y= ,求 +
2、分式的通分和约分
(1)通分最简公分母:小;高
(2)约分:注: 与 和
3、分式的定义域
①分式 (1)何时有意义(2)何时无意义(3)何时值为0
4、分式的。化简和求值
①1- ÷ +
其他例题见复习用书13页5(6、7、8、)6
三、小结 1、分式的通分和约分
2、分式的定义域
3、分式的化简和求值
四、练习:略
五、作业:
见复习用书
分式(2课时)
上课时间 年 月 日星期
一、复习要点
1、分式的通分和约分
2、分式的定义域
3、分式的化简和求值
二、复习过程
1、求代数式的值:①化 ②代 ③算
例:①已知x+y=5;xy=3,求x3y+2x2y2+xy3
②已知a=-1,b=-3,c=1,求 a2b--3abc
③已知a= 求 ÷( - )+
④已知x= y= ,求 +
2、分式的通分和约分
(1)通分最简公分母:小;高
(2)约分:注: 与 和
3、分式的定义域
①分式 (1)何时有意义(2)何时无意义(3)何时值为0
4、分式的化简和求值
①1- ÷ +
其他例题见复习用书13页5(6、7、8、)6
三、小结 1、分式的通分和约分
2、分式的定义域
3、分式的化简和求值
四、练习:略
五、作业:
见复习用书
读书破万卷下笔如有神,以上就是差异网为大家整理的4篇《初中数学分式教案》,希望对您有一些参考价值,更多范文样本、模板格式尽在差异网。
初中数学分式教案2
第一课时
一、教学过程
复习提问
1.分式的基本性质?
2.分式的变号法则?
新课
数学小笑话:(配上漫画插图幻灯片)
从前有个不学无术的富家子弟,有一次,父母出远门去办事,把他交给厨师照看,厨师问他:“我每天三餐每顿给你做两个馒头,够吗?”他哭丧着脸说:“不够,不够!”厨师又问:“那我就一天给你吃六个,怎么样?”他马上欣喜地说:“够了!够了!”
问:这个富家子弟为什么会犯这样的错误?
分数约分的方法及依据是什么?
1.提出课题:分式可不可以约分?根据什么?怎样约分?约到何时为止?
学生分组讨论,最终达成共识.
2.教师小结:
(1)约分的概念:把一个分式的分子与分母的公因式约去,叫做分式的约分.
(2)分式约分的依据:分式的基本性质.
(3)分式约分的方法:把分式的分子与分母分解因式,然后约去分子与分母的公因式.
(4)最简分式的概念:一个分式的分子与分母没有公因式时,叫做最简分式.
3.例题与练习:
例1约分:
(1);
请学生观察思考:①有没有公因式?②公因式是什么?
解:.
小结:①分式的分子、分母都是几个因式的积的。形式,所以约去分子、分母中相同因式的最低次幂,注意系数也要约分.②分子或分母的系数是负数时,一般先把负号提到分式本身的前边.
(2);
请学生分析如何约分.
解:.
小结:①当分式的分子、分母为多项式时,先要进行因式分解,才能够依据分式的基本性质进行约分.②注意对分子、分母符号的处理.
(3);
解:原式.
(4);
解:原式
.
(5);
解:原式.
例2?化简求值:
.其中,.
分析:约分是实现化简分式的一种手段,通过约分可把分式化成最简,而最简分式为分式间的进一步运算提供了便利条件.
解:原式.
当,时.
.
二、随堂练习
教材P65练习1、2.
三、总结、扩展
1.约分的依据是分式的基本性质.
2.若分式的分子、分母都是几个因式的积的形式,则约去分子、分母中相同因式的最低次幂,分子、分母和系数约去它们的最大公约数.
3.若分式的分子、分母中有多项式,则要先分解因式,再约分.
四、布置作业
教材P73中2、3.
初中数学分式教案3
教学目标
1.通过实践总结分式 的乘 除法,并能较熟练地进行式的乘除法 运算。
2.理解分式乘方的原理,掌握乘方的规律,并能运用乘方规律进行分式的乘 方运算
3.引 导学生通过分析、归纳,培养学生用类比的 方法探索新知识的能力
教学重点 分式的。乘除法、乘方运算
教学难点 分式的乘除法、混合运算,分式乘法,除法 、乘方运算中符号的确定。
教学过程
(一)复习与情境导入
1.(1)什么叫做分式的约分?约分的根据是什么?
(2):下列各式是否正确?为什么?
2.(1)回忆:
计算:
(2)尝试探究:计算:
(1) ; (2) .
概括 :分式的乘除法用式子表示即 抢答
尝试 探究用式子表示,用文字表达。培养学生的合情推理能力。
(二)实践与探索 1
例2计算
分析:①本题是几个分式在进行什么运算?
②每个分式的分子 和分母都是什么代数式?
③在分式的分子、分母中的多项式是否可以分解因式,怎样分解?
④怎样应用分式 乘法法则得到积的分式?
解 原式= = .
练习:①课本练习1.
②计 算:
(三)实践与探索2
探索分式的乘方的法则1.思 考
我们都学过了有理数的乘方,那么分式的乘 方该是怎样运算的呢?
先做下面的乘法:(1) = =( )3;
(2) = =( )k.
2.仔细观察这两题的结果,你能发现什么 规律?与同伴交流一下,然后完成下面的填 空: )(k) =___________(k是正整数)
老师应格外强调符 号问题 自主探究,后合作交流学习探索分式的乘方的法则
(四)小结与作业 怎样进 行分式 的乘除法?怎样进行分式的乘方?
作业:
(五)板书设计
分式的基本性质4
第一课时
(一)教学过程
复习提问
1.分式的定义?
2.分数的基本性质?有什么用途?
新课
1.类比分数的基本性质,由学生小结出分式的基本性质:
分式的分子与分母乘以(或除以)同一个不等于零的整式,分式的值不变,即:
,
(其中是不等于零的整式。)
2.加深对分式基本性质的理解:
例1 下列等式的右边是怎样从左边得到的?
(1);
由学生口述分析,并反问:为什么?
解:∵
∴.
(2);
学生口答,教师设疑:为什么题目未给的条件?(引导学生学会分析题目中的隐含条件。)
解:∵
∴.
(3)
学生口答。
解:∵,
∴.
例2 填空:
(1);
(2);
(3);
(4).
把学生分为四人一组开展竞赛,看哪个组做得又快又准确,并能小结出填空的依据。
例3 不改变分式的值,把下列各式的分子与分母中各项的系数都化为整数。
(1);
分析学生讨论:①怎样才能不改变公式的值?②怎样把分子分母中各项系数都化为整数?
解:.
(2).
解:.
例4 判断取何值时,等式成立?
学生分组讨论后得出结果:
∴.
(二)随堂练习
1.当为何值时,与的值相等
2.若分式有意义,则,满足条件为( )
以上答案都不对
3.下列各式不正确的是( )
4.若把分式的和都扩大两倍,则分式的值
A.扩大两倍 B.不变
C.缩小两倍 D.缩小四倍
(三)总结、扩展
1.分式的基本性质。
2.性质中的可代表任何非零整式。
3.注意挖掘题目中的隐含条件。
4.利用分式的基本性质将分式的分子、分母化成整系数形式,体现了数学化繁为简的策略,并为分式作进一步处理提供了便利条件。
(四)布置作业
教材P61中2、3;P62中B组的1
(五)板书设计
上一篇:小学数学分数乘法运算教案样例4篇
下一篇:返回列表