高一数学下册教案5篇
【导言】此例“高一数学下册教案5篇”的教案资料由阿拉题库网友为您分享整理,以供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载支持吧!
高一数学下册教案【第一篇】
课题:直线的一般式方程
课型:新授课
教学目标:
1、知识与技能
(1)明确直线方程一般式的形式特征;
(2)会把直线方程的一般式化为斜截式,进而求斜率和截距;
(3)会把直线方程的点斜式、两点式化为一般式。
2、过程与方法:学会用分类讨论的思想方法解决问题。
3、情态与价值观
(1)认识事物之间的普遍联系与相互转化;(2)用联系的观点看问题。
教学重点:直线方程的一般式。
教学难点:对直线方程一般式的理解与应用
教学过程:
问题
设计意图
师生活动
1、(1)平面直角坐标系中的每一条直线都可以用一个关于的二元一次方程表示吗?
(2)每一个关于的二元一次方程(A,B不同时为0)都表示一条直线吗?
使学生理解直线和二元一次方程的关系。
教师引导学生用分类讨论的方法思考探究问题(1),即直线存在斜率和直线不存在斜率时求出的直线方程是否都为二元一次方程。对于问题(2),教师引导学生理解要判断某一个方程是否表示一条直线,只需看这个方程是否可以转化为直线方程的某种形式。为此要对B分类讨论,即当时和当B=0时两种情形进行变形。然后由学生去变形判断,得出结论:
关于的二元一次方程,它都表示一条直线。
教师概括指出:由于任何一条直线都可以用一个关于的二元一次方程表示;同时,任何一个关于的二元一次方程都表示一条直线。
我们把关于关于的二元一次方程(A,B不同时为0)叫做直线的一般式方程,简称一般式(generalform).
2、直线方程的一般式与其他几种形式的直线方程相比,它有什么优点?
使学生理解直线方程的一般式的与其他形
学生通过对比、讨论,发现直线方程的一般式与其他形式的直线方程的一个不同点是:
问题
设计意图
师生活动
式的不同点。
直线的一般式方程能够表示平面上的所有直线,而点斜式、斜截式、两点式方程,都不能表示与轴垂直的直线。
3、在方程中,A,B,C为何值时,方程表示的直线
(1)平行于轴;(2)平行于轴;(3)与轴重合;(4)与重合。
使学生理解二元一次方程的系数和常数项对直线的位置的影响。
教师引导学生回顾前面所学过的与轴平行和重合、与轴平行和重合的直线方程的形式。然后由学生自主探索得到问题的答案。
4、例5的教学
已知直线经过点A(6,-4),斜率为,求直线的点斜式和一般式方程。
使学生体会把直线方程的点斜式转化为一般式,把握直线方程一般式的特点。
学生独立完成。然后教师检查、评价、反馈。指出:对于直线方程的一般式,一般作如下约定:一般按含项、含项、常数项顺序排列;项的系数为正;,的系数和常数项一般不出现分数;无特加要时,求直线方程的结果写成一般式。
5、例6的教学
把直线的一般式方程化成斜截式,求出直线的斜率以及它在轴与轴上的截距,并画出图形。
使学生体会直线方程的一般式化为斜截式,和已知直线方程的一般式求直线的斜率和截距的方法。
先由学生思考解答,并让一个学生上黑板板书。然后教师引导学生归纳出由直线方程的一般式,求直线的斜率和截距的方法:把一般式转化为斜截式可求出直线的斜率的和直线在轴上的截距。求直线与轴的截距,即求直线与轴交点的横坐标,为此可在方程中令=0,解出值,即为与直线与轴的截距。
在直角坐标系中画直线时,通常找出直线下两个坐标轴的交点。
6、二元一次方程的每一个解与坐标平面中点的有什么关系?直线与二元一次方程的解之间有什么关系?
使学生进一步理解二元一次方程与直线的关系,体会直解坐标系把直线与方程联系起来。
学生阅读教材第105页,从中获得对问题的理解。
7、课堂练习
巩固所学知识和方法。
学生独立完成,教师检查、评价。
问题
设计意图
师生活动
8、小结
使学生对直线方程的理解有一个整体的认识。
(1)请学生写出直线方程常见的几种形式,并说明它们之间的关系。
(2)比较各种直线方程的形式特点和适用范围。
(3)求直线方程应具有多少个条件?
(4)学习本节用到了哪些数学思想方法?
巩固课堂上所学的知识和方法。
学生课后独立思考完成。
归纳小结:
(1)请学生写出直线方程常见的几种形式,并说明它们之间的关系。
(2)比较各种直线方程的形式特点和适用范围。
(3)求直线方程应具有多少个条件?
(4)学习本节用到了哪些数学思想方法?
作业布置:第101页习题第10,11题
课后记:
高一下册数学教案【第二篇】
一、教学目标
1.知识与技能:掌握画三视图的基本技能,丰富学生的空间想象力。
2.过程与方法:通过学生自己的亲身实践,动手作图,体会三视图的作用。
3.情感态度与价值观:提高学生空间想象力,体会三视图的作用。
二、教学重点:画出简单几何体、简单组合体的三视图;
难点:识别三视图所表示的空间几何体。
三、学法指导:观察、动手实践、讨论、类比。
四、教学过程
(一)创设情景,揭开课题
展示庐山的风景图——“横看成岭侧看成峰,远近高低各不同”,这说明从不同的角度看同一物体视觉的效果可能不同,要比较真实反映出物体,我们可从多角度观看物体。
(二)讲授新课
1、中心投影与平行投影:
中心投影:光由一点向外散射形成的投影;
平行投影:在一束平行光线照射下形成的投影。
正投影:在平行投影中,投影线正对着投影面。
2、三视图:
正视图:光线从几何体的前面向后面正投影,得到的投影图;
侧视图:光线从几何体的左面向右面正投影,得到的投影图;
俯视图:光线从几何体的上面向下面正投影,得到的投影图。
三视图:几何体的正视图、侧视图和俯视图统称为几何体的三视图。
三视图的画法规则:长对正,高平齐,宽相等。
长对正:正视图与俯视图的长相等,且相互对正;
高平齐:正视图与侧视图的高度相等,且相互对齐;
宽相等:俯视图与侧视图的宽度相等。
3、画长方体的三视图:
正视图、侧视图和俯视图分别是从几何体的正前方、正左方和正上方观察到有几何体的正投影图,它们都是平面图形。
长方体的三视图都是长方形,正视图和侧视图、侧视图和俯视图、俯视图和正视图都各有一条边长相等。
4、画圆柱、圆锥的三视图:
5、探究:画出底面是正方形,侧面是全等的三角形的棱锥的三视图。
(三)巩固练习
课本P15练习1、2;P20习题[A组]2。
(四)归纳整理
请学生回顾发表如何作好空间几何体的三视图
(五)布置作业
课本P20习题[A组]1。
高一下册数学教案【第三篇】
一、教学目标:
掌握向量的概念、坐标表示、运算性质,做到融会贯通,能应用向量的有关性质解决诸如平面几何、解析几何等的问题。
二、教学重点:
向量的性质及相关知识的综合应用。
三、教学过程:
(一)主要知识:
1、掌握向量的概念、坐标表示、运算性质,做到融会贯通,能应用向量的有关性质解决诸如平面几何、解析几何等的问题。
(二)例题分析:略
四、小结:
1、进一步熟练有关向量的运算和证明;能运用解三角形的知识解决有关应用问题,
2、渗透数学建模的思想,切实培养分析和解决问题的能力。
高一数学下册教案【第四篇】
一、学习目标
知识与技能:了解柱体,锥体,台体,球体的几何特征,会画三视图、直观图,能求表面积、体积。
过程与方法:通过旋转体的形成,掌握利用轴截面化空间问题为平面问题处理的方法。会画图、识图、用图。
情感态度与价值观:培养动手能力,空间想象能力,由欣赏图形的美到去发现美,创造美。
二、学习重、难点
学习重点:各空间几何体的特征,计算公式,空间图形的画法。
学习难点:空间想象能力的建立,空间图形的识别与应用。
三、使用说明及学法指导:结合空间几何体的定义,观察空间几何体的图形培养空间想象能力,熟记公式,灵活运用。
四、知识链接1.回忆柱体、锥体、台体、球体的几何特征。2.熟记表面积及体积的公式。
五、学习过程
题型一:基本概念问题
A例1:(1)下列说法不正确的是( )
A:圆柱的侧面展开图是一个矩形 B:圆锥的轴截面是一个等腰三角形 C: 直角三角形绕着它的一边旋转一周形成的曲面围成的几何体是圆锥 D:圆台平行于底面的截面是圆面
(2)下列说法正确的是( )A:棱柱的底面一定是平行四边形 B:棱锥的底面一定是三角形C: 棱锥被平面分成的两部分不可能都是棱锥D:棱柱被平面分成的两部分可以都是棱柱
题型二:三视图与直观图的问题
B例2:有一个几何体的三视图如下图所示,这个几何体应是一个( )
A 棱台 B 棱锥 C 棱柱 D 都不对
B例3:一个三角形在其直观图中对应一个边长为1正三角形,原三角形的面积为 ( )
A. B. C. D.
题型三:有关表面积、体积的运算问题
B例4:已知各顶点都在一个球面上的正四柱高为4,体积为16,则这个球的表面积是 ( )
A B C 24 D 32
C例5:若正方体的棱长为 ,则以该正方体各个面的中心为顶点的凸多面体的体积 ( )
(A) (B) (C) (D)
题型四:有关组合体问题
例6:已知某个几何体的三视图如下,根据图中标出的尺寸(单位:cm),可得这个几何体的体积是( )
A. B. C. D.
六、达标训练
1、若一个几何体的三视图都是等腰三角形,则这个几何体可能是 ( )
A.圆锥 B.正四棱锥 C.正三棱锥 D.正三棱台
2、一个梯形采用斜二测画法作出其直观图,则其直观图的面积是原来梯形面积的( )
A. 倍 B. 倍 C. 倍 D. 倍
3、将一圆形纸片沿半径剪开为两个扇形,其圆心角之比为3∶4. 再将它们卷成两个圆锥侧
面,则两圆锥体积之比为 ( )
∶4 ∶16 ∶64 D.都不对
4、利用斜二测画法得到的
①三角形的直观图一定是三角形; ②正方形的直观图一定是菱形;
③等腰梯形的直观图可以是平行四边形; ④菱形的直观图一定是菱形。
以上结论正确的是 ( )
A.①② B. ① C.③④ D. ①②③④
5、有一个几何体的三视图如下图所示,这个几何体应是一个( )
A 棱台 B 棱锥 C 棱柱 D 都不对
6、如果一个几何体的三视图如图所示,主视图与左视图是边长为2的`正三角形、俯视图轮廓为正方形,(单位长度:cm),则此几何体的侧面积是( )
A. cm B. cm2
C. 12 cm D. 14 cm2
7、若圆锥的表面积为 平方米,且它的侧面展开图是一个半圆,则这个圆锥的底面的直径为
8、将圆心角为 ,面积为 的扇形,作为圆锥的侧面,求圆锥的表面积和体积
9、 如图,在四边形 中, , , , , ,求四边形 绕 旋转一周所成几何体的表面积及体积
10、(如图)在底半径为2母线长为4的 圆锥中内接一个高为 的圆柱,求圆柱的表面积
七、小结与反思
至理名言没有学不会的知识,只有不会学的学生。
总结20xx年已经到来,新的一年数学网会为您整理更多更好的文章,希望本文高一数学第一单元下册教案:空间几何体教案能给您带来帮助!
高一下册数学教案【第五篇】
教学目标:
1、知识与技能目标:理解并掌握圆的标准方程,会根据不同条件求圆的标准方程,能从圆的标准方程熟练地写出它的圆心坐标与半径。
2、过程与方法目标:通过对圆的标准方程的推导及应用,渗透数形结合、待定系数法等数学思想方法,提高学生的观察、比较、分析、概括等思维能力。
3、情感与价值观目标:通过学生主动参与圆的相关知识的探讨和几何画板在解与圆有关问题中的应用,激发学生数学学习的兴趣,培养学生的创新精神。
教学重点:
圆的标准方程的推导及应用。
教学难点:
利用圆的几何性质求圆的标准方程。
教学方法:
本节课采用“诱思探索”的教学方法,借助学生已有的知识引出新知;在概念的形成与深化过程中,以一系列的'问题为主线,采用讨论式,引导学生主动探究,自己构建新知识;通过层层深入的例题配置,使学生思路逐步开阔,提高解决问题的能力。
同时借助多媒体,增强教学的直观性,有利于渗透数形结合的思想,同时增大课堂容量,提高课堂效率。
教学过程:
一、复习引入 :
1、 提问:初中平面几何学习的哪些图形?
初中平面几何中所学是两个方面的知识:直线形的和曲线形的。在曲线形方面学习的是圆,学习解析几何以来,已经讨论了直线方程,今天我们来研究最简单、最完美的曲线圆的方程。
2、提问:具有什么性质的点的轨迹是圆?
强调确定一个圆需要的的条件为:圆心与半径,它们分别确定了圆的位置与大小,
二、概念的形成:
1、让学生根据显示在屏幕上的圆自己探究圆的方程。
教师演示圆的形成过程,让学生自己探究圆的方程,教师巡视,加强对学生的个别指导,由学生讲解思路,根据学生的回答,教师展示学生的想法,将两种解法同时显示在屏幕上,方便学生对比。
学生通常会有两种解法:
解法1:(圆心不在坐标原点)设M(x,y)是一动点,点M在该圆上的充要条件是|CM|=r。由两点间的距离公式,得
=r。
两边平方,得
(x-a)2+(y-b)2=r2。
解法2:(圆心在坐标原点)设M(x,y)是一动点,点M在该圆上的充要条件是|CM|=r。由两点间的距离公式,得
=r
两边平方,得
x2+y2=r2
若学生只有一种做法,教师可引导学生建立不同的坐标系,有自己发现另一个方程。
2、圆的标准方程:(x-a)2+(y-b)2=r2
当a=b=0时,方程为x2+y2=r2
三、 概念深化:
归纳圆的标准方程的特点:
①圆的标准方程是一个二元二次方程;
②圆的标准方程由三个独立的条件a、b、r决定;
③圆的标准方程给出了圆心的坐标和半径。
四、 应用举例:
练习1 104页练习8-9 1、2(学生口答)
练习2 说出方程 (x+m)2+ (y+n)2=a2的圆心与半径。
例1 、根据下列条件,求圆的方程:
(1)圆心在点C(-2,1),并且过点A(2,-2);
(2)圆心在点C(1,3),并且与直线3x-4y –6=0相切;
(3)过点A(2,3),B(4,9),以线段AB为直径。
分析探求:让学生说出如何作出这些圆,教师用几何画板做图,帮助学生理清解题思路,由学生自己解答,并通过几何画板来验证。
例2、 求过点A(0,1),B(2,1)且半径为 的圆的方程。
分析探求:鼓励学生一题多解,先让学生自己求解,再相互讨论、交流、补充,最后教师将学生的想法用多媒体进行展示。
思路一:利用待定系数法设方程为 (x-a) 2 + (y-b) 2 = 5,将两点坐标代入,列方程组,求得a,b,再代入圆的方程。
思路二:利用圆心在圆上两点的垂直平分线上这一性质,利用待定系数法设方程为 (x-1) 2 + (y-b) 2 = 5,将一点坐标代入,列方程,求得b,再代入圆的方程。
思路三:画出圆的图形,利用直角三角形,直接求圆心坐标。
由例1、例2总结求圆的标准方程的方法。
五、反馈练习:
104页练习8-9 3(要求学生限时完成)
六、归纳总结:
学生小结并相互补充,师生共同整理完善。
1、圆的标准方程的推导;
2、圆的标准方程的形式;
3、求圆的方程的方法;
4、数学思想。
七、课后作业:(略)
上一篇:文明礼仪主题班会教案【热选4篇】