八年级数学教案【推荐4篇】

网友 分享 时间:

【路引】由阿拉题库网美丽的网友为您整理分享的“八年级数学教案【推荐4篇】”文档资料,以供您学习参考之用,希望这篇范文对您有所帮助,喜欢就复制下载支持吧!

八年级数学教案【第一篇】

一、课堂导入

回顾平行四边的性质定理及定义

1、什么叫平行四边形?平行四边形有什么性质?

2、将以上的性质定理,分别用命题形式叙述出来。(如果……那么……)

根据平行四边形的定义,我们研究了平行四边形的其它性质,那么如何来判定一个四边形是平行四边形呢?除了定义还有什么方法?平行四边形性质定理的逆命题是否成立?

二、新课讲解

平行四边形的判定:

(定义法):两组对边分别平行的四边形的平边形。

几何语言表达定义法:

∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形

解析:一个四边形只要其两组对边分别互相平行,则可判定这个四边形是一个平行四边形。

活动:用做好的纸条拼成一个四边形,其中强调两组对边分别相等。

(平行四边形判定定理):

(一)两组对边分别相等的四边形是平行四边形。

设问:这个命题的前提和结论是什么?

已知:四边形ABCD中,AB=CD,BC=DA。

求证:四边ABCD是平行四边形。

分析:判定平行四边形的依据目前只有定义,也就是须证明两组对边分别平行,当然是借助第三条直线证明角等。连结BD。易证三角形全等。

板书证明过程。

小结:用几何语言表达用定义法和刚才证明为正确的方法证明一个四边形是平行四边形的方法为:

平行四边形判定定理1:二组对边分别相等的四边形是平行四边形∵AB=CD,AD=BC,∴四边形ABCD是平行四边形

(二)设问:若一个四边形有一组对边平行且相等,能否判定这个四边形也是平行四边形呢?

活动:课本探究内容,并用事准备好的纸条(纸条的长度相等),先将纸条放置不平行位置,让学生设想若二纸条的端点为四边形的顶点,则组成的四边形是不是平行四边形?若将纸条摆放为平行的位置,则同样用二纸条的端点为顶点组成的四边形是不是平行四边形?

设问:我们能否用推理的方法证明这个命题是正确的呢?(让学生找出题设、结论,然后写出已知、求证及证明过程。)

八年级数学教案【第二篇】

教材分析

因式分解是代数式的一种重要恒等变形。《数学课程标准》虽然降低了因式分解的特殊技巧的要求,也对因式分解常用的四种方法减少为两种,且公式法的应用中,也减少为两个公式,但丝毫没有否定因式分解的教育价值及其在代数运算中的重要作用。本章教材是在学生学习了整式运算的基础上提出来的,事实上,它是整式乘法的逆向运用,与整式乘法运算有密切的联系。分解因式的变形不仅体现了一种“化归”的思想,而且也是解决后续—分式的化简、解方程等—恒等变形的基础,为数学交流提供了有效的途径。分解因式这一章在整个教材中起到了承上启下的作用。本章的教育价值还体现在使学生接受对立统一的观点,培养学生善于观察、善于分析、正确预见、解决问题的能力。

学情分析

通过探究平方差公式和运用平方差公式分解因式的活动中,让学生发表自己的观点,从交流中获益,让学生获得成功的体验,锻炼克服困难的意志建立自信心。

教学目标

1、在分解因式的过程中体会整式乘法与因式分解之间的联系。

2、通过公式a -b =(a+b)(a-b)的逆向变形,进一步发展观察、归纳、类比、等能力,发展有条理地思考及语言表达能力。

3、能运用提公因式法、公式法进行综合运用。

4、通过活动4,能将高偶指数幂转化为2次指数幂,培养学生的化归思想。

教学重点和难点

重点:灵活运用平方差公式进行分解因式。

难点:平方差公式的推导及其运用,两种因式分解方法(提公因式法、平方差公式)的综合运用。

八年级数学教案【第三篇】

教学目标:

1、知识目标:探索图形之间的变换关系(轴对称、平移、旋转及其组合)。

2、能力目标:

①经历对具有旋转特征的图形进行观察、分析、动手操作和画图等过程,掌握画图技能。

②能够按要求作出简单平面图形旋转后的图形,并在此基础上达到巩固旋转的有关性质。

3、情感体验点:培养学生的观察能力和审美能力,激发学生学习数学的兴趣。

重点与难点:

重点:图形之间的变换关系(轴对称、平移、旋转及其组合);

难点:综合利用各种变换关系观察图形的形成。

疑点:基本图案不同,形成方式不同。

教学方法:

新授课在教师引导下,以学生的分组讨论、合作交流为主展开教学。

教学过程设计:

1、情境导入

播放自制图形形成的影片,如图351。

2、充分利用本课时引入开放性的问题:图351由四部分组成,每部分都包括两个小十字,其中一部分能经过适当的旋转得到其他三部分吗?能经过平移吗?能经过轴对称吗?还有其它方式吗?

问题本身为学生创设了一个探究图形之间变化关系的情景,图形虽十简单,但变换方式综合性强,可以让学生自由发挥,各抒已见,后由教师进行适当归纳小结:

(1)整个图形可以看做是由一个十字组成部分通过连续七次平移前后的图形共同组成;

(2)整个图形也可以看做是由左边的两个十字组成的部分通过三次放置形成的;

(3)整个图形不定期可以看做把左边的两个十字组成的部分先通过平移一次形成左右四个十字组成的图形,然后绕图形中心旋转90度前后的图形共同组成;

(4)整个图形还可以看做把左边的两个十字组成的部分通过二次轴对称形成的。

(学生可能还有其他不同描述,教师应予以肯定)

3、通过上述问题的讨论,我们看到图形的平移、旋转,轴对称变换是图形变换中最基本的三种变换方式,它们是今后设计图案的主要手段。

4、利用想一想你能将图352的左图,通过平移或旋转得到右图吗?

学生议论或动手操作会发现这是不可能的,教材意图十分明确,要告诉学生并不是所有图形都可以通过一次平移或旋转而得到的,从而要求我们今后分析图形之间的关系时,要充分利用它们各自的性质、特征正确判断和识别。那么上述图形能通过轴对称变换从左图变成右图吗?进一步让学生思考,从而得到结论是可能的。

5、例1、怎样将图353中的甲图变成乙图案?

通过相对简单活泼的问题,让学生能运用图形变换的几种不同方式解答问题(先旋转再平移后等到或先平移后旋转也可以)

例2、怎样将图354中右边的图案变成左边的图案?

留给学生充足的时间讨论交流。

(师):哪位同学有好好方法,请告诉大家!

(生):以右图案的中心为旋转中心,将图案按逆时针方向旋转900 。

(生):以右图案的中心为旋转中心,将图案顺逆时针方向旋转2700 。

明确可以通过不同的办法达到同样的效果,激励学生动手动脑。

5、学习小结

(1)内容总结

两个图案前后变化彩用了哪些方法?(平移、旋转,轴对称)

(2)方法归纳

①了解并知道图案变化的一般方法。

②图案变化的方法很多,在生活中要养成多途径观察,思考问题的习惯。

6、目标检测

图355是由三个正三角形拼成的,它可以看做由其中一个三角形经过怎样的变换而得到?

延伸拓展:

1、链接生活

链接一:奥运会的五环旗图案是大家熟悉的图案,请你根据所学知识分析它的形成。(用课本知识解释生活中的图形变换)

链接二:夏季是荷花盛开的季节,同学们都赞美过它出淤泥而不染的品质,很多同学曾画过荷花,请你用所学知识再画一朵荷花,看与以前有什么不同的感受(让学生进一步体会数学与生活的密切联系)

实践探索:

①实践活动列举实例归纳图形之间的变换关系(平移、旋转,轴对称及其组合)

②巩固练习课本74页中的习题。

板书设计:

它们是怎样变过来的。

轴对称、平移、旋转的性质例题;

图形之间的变换关系;

八年级数学教案【第四篇】

教学任务分析

教学目标

知识技能

一、类比同分母分数的加减,熟练掌握同分母分式的加减运算.

二、类比异分母分数的加减及通分过程,熟练掌握异分母分式的加减及通分过程与方法.

数学思考

在分式的加减运算中,体验知识的化归联系和思维灵活性,培养学生整体思考的分析问题能力.

解决问题

一、会进行同分母和异分母分式的加减运算.

二、会解决与分式的加减有关的简单实际问题.

三、能进行分式的加、剪、乘、除、乘方的混合运算.

情感态度

通过师生活动、学生自我探究,让学生充分参与到数学学习的过程中来,使学生在整体思考中开阔视野,养成良好品德,渗透化归对立统一的辩证观点.

重点

分式的加减法.

难点

异分母分式的加减法及简单的分式混合运算.

教学流程安排

活动流程图

活动内容和目的

活动1:问题引入

活动2:学习同分母分式的加减

活动3:探究异分母分式的加减

活动4:发现分式加减运算法则

活动5:巩固练习、总结、作业

向学生提出两个实际问题,使学生体会学习分式加减的必要性及迫切性,创始问题情境,激发学生的学习热情.

类比同分母分数的加减,让学生归纳同分母分式的加减的方法并进行简单运算.

回忆异分母分数的加减,使学生归纳异分母分式的加减的方法.

通过以上探究过程,让学生发现分式加减运算的法则,通过分式在物理学的应用及简单混合运算,使学生深化对分式加减运算法则的理解.

通过练习、作业进一步巩固分式的运算.

课前准备

教具

学具

补充材料

课件

教学过程设计

问题与情境

师生行为

设计意图

[活动1]

1.问题一:比较电脑与手抄的录入时间.

2.问题二;帮帮小明算算时间

所需时间为,

如何求出的值?

3.这里用到了分式的加减,提出本节课的主题.

教师通过课件展示问题.学生积极动脑解决问题,提出困惑:

分式如何进行加减?

通过实际问题中要用到分式的加减,从而提出问题,让学生思考,可以激发学生探究的热情.

[活动2]

1.提出小学数学中一道简单的分数加法题目.

2.用课件引导学生用类比法,归纳总结同分母分式加法法则.

3.教师使用课件展示[例1]

4.教师通过课件出两个小练习.

教师提出问题,学生回答,进一步回忆同分母分数加减的运算法则.

学生在教师的引导下,探索同分母分式加减的运算方法.

通过例题,让学生和教师一起体会同分母分式加减运算,同时教师指出运算中的.注意事项.

由两个学生板书自主完成练习,教师巡视指导学生练习.

运用类比的方法,从学生熟知的知识入手,有利于学生接受新知识.

师生共同完成例题,使学生感受到自己很棒,自己能够通过思考学会新知识,提高自信心.

让学生进一步体会同分母分式的加减运算.

[活动3]

1.教师以练习的形式通过“自我发展的平台”,向学生展示这样一道题.

2.教师提出思考题:

异分母的分式加减法要遵守什么法则呢?

教师展示一道异分母分式的加减题目,学生自然就想到异分母分数的加减.

教师通过课件引导学生思考,学生会想到小学数学中,异分母分数的加减法则,从而联想到异分母分式的加减法则,教师引导学生归纳出异分母分式加减运算的方法思路.

由学生主动提出解决问题的方法,从而激发了学生探究问题的兴趣.

通过学生的自我探究、归纳总结,让学生充分参与到数学学习的过程中来,体会学习的乐趣.

[活动4]

1.在语言叙述分式加减法则的基础上,用字母表示分式的加减法法则.

2.教师使用课件展示[例2]

3.教师通过课件出4个小练习.

4.[例3]在图的电路中,已测定CAD支路的电阻是R1欧姆,又知CBD支路的电阻R2比R1大50欧姆,根据电学的有关定律可知总电阻R与R1R2满足关系式 ;

试用含有R1的式子表示总电阻R

5.教师使用课件展示[例4]

教师提出要求,由学生说出分式加减法则的字母表示形式.

通过例题,让学生和教师一起体会异分母分式加减运算,同时教师重点演示通分的过程.

教师引导学生找出每道题的方法、如何找最简公分母及时指出学生在通分中出现的问题,由学生自己完成.

教师引导学生寻找解决问题的突破口,由师生共同完成,对比物理学中的计算,体会各学科知识之间的联系.

分式的混合运算,师生共同完成,教师提醒学生注意运算顺序,通分要仔细.

由此练习学生的抽象表达能力,让学生体会数学符号语言的精练.

让学生体会运用的公式解决问题的过程.

锻炼学生运用法则解决问题的能力,既准确又有速度.

提高学生的计算能力.

通过分式在物理学中的应用,加强了学科之间的联系,使学生开阔了视野,让学生体会到学习数学的重要性,体会各学科全面发展的重要性,提高学习的兴趣.

提高学生综合应用知识的能力.

[活动5]

1、教师通过课件出2个分式混合运算的小练习.

2、总结:

a)这节课我们学习了哪些知识?你能说一说吗?

b)⑴方法思路;

c)⑵计算中的主意事项;

d)⑶结果要化简.

3、作业:

a)教科书习题第4、5、6题.

学生练习、巩固.

教师巡视指导.

学生完成、交流.,师生评价.

教师引导学生回忆本节课所学内容,学生回忆交流,师生共同补充完善.

教师布置作业.

锻炼学生运用法则进行运算的能力,提高准确性及速度.

提高学生归纳总结的能力.

20 305709
");