勾股定理的教案【最新4篇】
【阅读指引】阿拉题库网友为您分享整理的“勾股定理的教案【最新4篇】”范文资料,以供您参考学习之用,希望这篇文档对您有所帮助,喜欢就下载分享给大家吧!
勾股定理【第一篇】
知识结构:
重点、难点分析
本节内容的重点是及其应用。它可用边的关系判断一个三角形是否为直角三角形。为判断三角形的形状提供了一个有力的依据。
本节内容的难点是的应用。在用时,分不清哪一条边作斜边,因此在用判断三角形的形状时而出错;另外,在解决有关综合问题时,要将给的边的数量关系经过代数变化,最后达到一个目标式,这种“转化”对学生来讲也是一个困难的地方。
教法建议:
本节课教学模式主要采用“互动式”教学模式及“类比”的教学方法。通过前面所学的垂直平分线定理及其逆定理,做类比对象,让学生自己提出问题并解决问题。在课堂教学中营造轻松、活泼的课堂气氛。通过师生互动、生生互动、学生与教材之间的互动,造成“情意共鸣,沟通信息,反馈流畅,思维活跃”,达到培养学生思维能力的目的。具体说明如下:
(1)让学生主动提出问题
利用类比的学习方法,由学生将上节课所学习的勾股定理的逆命题书写出来。这里分别找学生口述文字;用符号、图形的形式板书逆命题的内容。所有这些都由学生自己完成,估计学生不会感到困难。这样设计主要是培养学生善于提出问题的习惯及能力。
(2)让学生自己解决问题
判断上述逆命题是否为真命题?对这一问题的解决,学生会感到有些困难,这里教师可做适当的点拨,但要尽可能的让学生的发现和探索,找到解决问题的思路。
(3)通过实际问题的解决,培养学生的数学意识。
教学目标:
1、知识目标:
(1)理解并会证明;
(2)会应用判定一个三角形是否为直角三角形;
(3)知道什么叫勾股数,记住一些觉见的勾股数。
2、能力目标:
(1)通过勾股定理与其逆定理的比较,提高学生的辨析能力;
(2)通过勾股定理及以前的知识联合起来综合运用,提高综合运用知识的能力。
3、情感目标:
(1)通过自主学习的发展体验获取数学知识的感受;
(2)通过知识的纵横迁移感受数学的辩证特征。
教学重点:及其应用
教学难点:及其应用
教学用具:直尺,微机
教学方法:以学生为主体的讨论探索法
教学过程:
1、新课背景知识复习(投影)
勾股定理的内容
文字叙述(投影显示)
符号表述
图形(画在黑板上)
2、逆定理的获得
(1)让学生用文字语言将上述定理的逆命题表述出来
(2)学生自己证明
逆定理:如果三角形的三边长 有下面关系:
那么这个三角形是直角三角形
强调说明:(1)勾股定理及其逆定理的区别
勾股定理是直角三角形的性质定理,逆定理是直角三角形的判定定理。
(2)判定直角三角形的方法:
①角为 、②垂直、③
2、 定理的应用(投影显示题目上)
例1 如果一个三角形的三边长分别为
则这三角形是直角三角形
证明:∵
∴
∵∠C=
例2 已知:如图,四边形ABCD中,∠B= ,AB=3,BC=4,CD=12,AD=13求四边形ABCD的面积
解:连结AC
∵∠B= ,AB=3,BC=4
∴
∴AC=5
∵
∴
∴∠ACD=
例3 如图,已知:CD⊥AB于D,且有
求证:△ACB为直角三角形
证明:∵CD⊥AB
∴
又∵
∴
∴△ABC为直角三角形
以上例题,分别由学生先思考,然后回答。师生共同补充完善。(教师做总结)
4、课堂小结:
(1)逆定理应用时易出现的错误:分不清哪一条边作斜边(最大边)
(2)判定是否为直角三角形的一种方法:结合勾股定理和代数式、方程综合运用。
5、布置作业 :
a、书面作业 P131#9
b、上交作业 :已知:如图,△DEF中,DE=17,EF=30,EF边上的中线DG=8
求证:△DEF是等腰三角形
板书设计:
探究活动
分别以直角三角形三边为直径作三个半圆,这三个半圆的面积之间有什么关系?为什么?
提示:设直角三角形边长分别为
则三个半圆面积分别为
勾股定理【第二篇】
各位专家领导,上午好:
今天我说课的课题是《勾股定理的逆定理》
一、教材分析 :
(一)、本节课在教材中的地位作用
“勾股定理的逆定理”一节,是在上节“勾股定理”之后,继续学习的一个直角三角形的判断定理,它是前面知识的继续和深化,勾股定理的逆定理是初中几何学习中的重要内容之一,是今后判断某三角形是直角三角形的重要方法之一,在以后的解题中,将有十分广泛的应用,同时在应用中渗透了利用代数计算的方法证明几何问题的思想,为将来学习解析几何埋下了伏笔,所以本节也是本章的重要内容之一。课标要求学生必须掌握。
(二)、教学目标:
根据数学课标的要求和教材的具体内容,结合学生实际我确定了本节课的教学目标。
知识技能:
1、理解勾股定理的逆定理的证明方法并能证明勾股定理的逆定理。
2、掌握勾股定理的逆定理,并能利用勾股定理的逆定理判定一个三角形是不是直角三角形
过程与方法:
1、通过对勾股定理的逆定理的探索,经历知识的发生、发展与形成的过程
2、通过用三角形三边的数量关系来判断三角形的形状,体验数与形结合方法的应用
3、通过勾股定理的逆定理的证明,体会数与形结合方法在问题解决中的作用,并能运用勾股定理的逆定理解决相关问题。
情感态度:
1、通过用三角形三边的数量关系来判断三角形的形状,体验数与形的内在联系,感受定理与逆定理之间的和谐及辩证统一的关系
2、在探究勾股定理的逆定理的活动中,通过一系列富有探究性的问题,渗透与他人交流、合作的意识和探究精神
(三)、学情分析:
尽管已到初二下学期学生知识增多,能力增强,但思维的局限性还很大,能力也有差距,而勾股定理的逆定理的证明方法学生第一次见到,它要求根据已知条件构造一个直角三角形,根据学生的智能状况,学生不容易想到,因此勾股定理的逆定理的证明又是本节的难点,这样如何添辅助线就是解决它的关键,这样就确定了本节课的重点、难点和关键。
重点:勾股定理逆定理的应用
难点:勾股定理逆定理的证明
关键:辅助线的添法探索
二、教学过程:
本节课的设计原则是:使学生在动手操作的基础上和合作交流的良好氛围中,通过巧妙而自然地在学生的认识结构与几何知识结构之间筑了一个信息流通渠道,进而达到完善学生的数学认识结构的目的。
(一)、复习回顾: 复习回顾与勾股定理有关的内容,建立新旧知识之间的联系。
(二)、创设问题情境
一开课我就提出了与本节课关系密切、学生用现有的知识可探索却又解决不好的问题,去提示本节课的探究宗旨。(演示)古代埃及人把一根长绳打上等距离的13个结,然后用桩钉如图那样的三角形,便得到一个直角三角形。这是为什么?……。这个问题一出现马上激起学生已有知识与待研究知识的认识冲突,引起了学生的重视,激发了学生的兴趣,因而全身心地投入到学习中来,创造了我要学的气氛,同时也说明了几何知识来源于实践,不失时机地让学生感到数学就在身边。
(三)、学生在教师的指导下尝试解决问题,总结规律(包括难点突破)
因为几何来源于现实生活,对初二学生来说选择适当的时机,让他们从个体实践经验中开始学习,可以提高学习的主动性和参与意识,所以勾股定理的逆定理不是由教师直接给出的,而是让学生通过动手折纸在具体的实践中观察满足条件的三角形直观感觉上是什么三角形,再用直角三角形插入去验证猜想。
这样设计是因为勾股定理逆定理的证明方法是学生第一次见到,它要求按照已知条件作一个直角三角形,根据学生的智能状况学生是不容易想到的,为了突破这个难点,我让学生动手裁出了一个两直角边与所折三角形两条较小边相等的直角三角形,通过操作验证两三角形全等,从而不仅显示了符合条件的三角形是直角三角形,还孕育了辅助线的添法,为后面进行逻辑推理论证提供了直观的数学模型。
接下来就是利用这个数学模型,从理论上证明这个定理。从动手操作到证明,学生自然地联想到了全等三角形的性质,证明它与一个直角三角形全等,顺利作出了辅助直角三角形,整个证明过程自然、无神秘感,实现了从生动直观向抽象思维的转化,同时学生亲身体会了动手操作——观察——猜测——探索——论证的全过程,这样学生不是被动接受勾股定理的逆定理,因而使学生感到自然、亲切,学生的学习兴趣和学习积极性有所提高。使学生确实在学习过程中享受到自我创造的快乐。
在同学们完成证明之后,可让他们对照课本把证明过程严格的阅读一遍,充分发挥教课书的作用,养成学生看书的习惯,这也是在培养学生的自学能力。
(四)、组织变式训练
本着由浅入深的原则,安排了三个题目。(演示)第一题比较简单,让学生口答,让所有的学生都能完成。第二题则进了一层,字母代替了数字,绕了一个弯,既可以检查本课知识,又可以提高灵活运用以往知识的能力。第三题则要求更高,要求学生能够推出可能的结论,这些作法培养了学生灵活转换、举一反三的能力,发展了学生的思维,提高了课堂教学的效果和利用率。在变式训练中我还采用讲、说、练结合的方法,教师通过观察、提问、巡视、谈话等活动、及时了解学生的学习过程,随时反馈,调节教法,同时注意加强有针对性的个别指导,把发展学生的思维和随时把握学生的学习效果结合起来。
(五)、归纳小结,纳入知识体系
本节课小结先让学生归纳本节知识和技能,然后教师作必要的补充,尤其是注意总结思想方法,培养能力方面,比如辅助线的添法,数形结合的思想,并告诉同学今天的勾股定理逆定理是同学们通过自己亲手实践发现并证明的,这种讨论问题的方法是培养我们发现问题认识问题的好方法,希望同学在课外练习时注意用这种方法,这都是教给学习方法。
(六)、作业布置
由于学生的思维素质存在一定的差异,教学要贯彻“因材施教”的原则,为此我安排了两组作业。A组是基本的思维训练项目,全体都要做,这样有利于学生学习习惯的培养,以及提高他们学好数学的信心。B组题适当加大难度,拓宽知识,供有能力又有兴趣的学生做,日积月累,对训练和培养他们的思维素质,发展学生的个性有积极作用。
三、说教法、学法与教学手段
为贯彻实施素质教育提出的面向全体学生,使学生全面发展主动发展的精神和培养创新活动的要求,根据本节课的教学内容、教学要求以及初二学生的年龄和心理特征以及学生的认知规律和认知水平,本节课我主要采用了以学生为主体,引导发现、操作探究的教学方法,即不违反科学性又符合可接受性原则,这样有利于培养学生的学习兴趣,调动学生的学习积极性,发展学生的思维;有利于培养学生动手、观察、分析、猜想、验证、推理能力和创新能力;有利于学生从感性认识上升到理性认识,加深对所学知识的理解和掌握;有利于突破难点和突出重点。
此外,本节课我还采用了理论联系实际的教学原则,以教师为主导、学生为主体的教学原则,通过联系学生现有的经验和感性认识,由最邻近的知识去向本节课迁移,通过动手操作让学生独立探讨、主动获取知识。
总之,本节课遵循从生动直观到抽象思维的认识规律,力争最大限度地调动学生学习的积极性;力争把教师教的过程转化为学生亲自探索、发现知识的过程;力争使学生在获得知识的过程中得到能力的培养。
勾股定理的教案【第三篇】
一、教学目标
知识与技能
理解并掌握勾股定理的逆定理,会应用定理判定直角三角形;理解勾股定理与勾股定理逆定理的区别与联系;理解原命题和逆命题的概念,知道二者的关系及二者真假性的关系。
过程与方法
经历得出猜想、推理证明的过程,提升自主探究、分析问题、解决问题的能力。
情感、态度与价值观
体会事物之间的联系,感受几何的魅力。
二、教学重难点
重点勾股定理的逆定理及其证明。
难点勾股定理的逆定理的证明。
三、教学过程
(一)导入新课
复习勾股定理,分清其题设和结论。
提问学生画直角三角形的方法(可用尺类工具),然后要求不能用绳子以外的工具。
出示古埃及人利用等长的。3、4、5个绳结间距画直角三角形的方法,以其中蕴含何道理为切入点引出课题。
(二)讲解新知
请学生思考3,4,5之间的关系,结合勾股定理的学习经验明确
出示数据,6cm,,请学生计算验证数据满足上述平方和关系,并画出相应边长的三角形检验是否为直角三角形。
学生活动:同桌两人一组,将三边换成其他满足上述平方和关系的数据,如4cm,,,画出相应边长的三角形检验是否为直角三角形。
八年级数学《勾股定理》教案【第四篇】
一、教学目标
(一)教学知识点
1.掌握勾股定理,了解利用拼图验证勾股定理的方法。
2.运用勾股解决一些实际问题。
(二)能力训练要求
1.学会用拼图的方法验证勾股定理,培养学生的创新能力和解决实际问题的能力。
2.在拼图过程中,鼓励学生大胆联想,培养学生数形结合的意识。
(三)情感与价值观要求
利用拼图的方法验证勾股定理,是我国古代数学家的一大贡献。借助对学生进行爱国主义教育。并在拼图的过程中获得学习数学的快乐,提高学习数学的兴趣。
二。教学重、难点
重点:勾股定理的证明及其应用。
难点:勾股定理的证明。
三。教学方法
教师引导和学生自主探索相结合的方法。
在用拼图的方法验证勾股定理的过程中。教师要引导学生善于联想,将形的问题与数的问题联系起来,让学生自主探索,大胆地联系前面知识,推导出勾股定理,并自己尝试用勾股定理解决实际问题。
四。教具准备
1.每个学生准备一张硬纸板;
2.投影片三张:
第一张:问题串(记作 A);
第二张:议一议(记作 B);
第三张:例题(记作 C).
五。教学过程
Ⅰ.创设问题情景,引入新课
[师]我们曾学习过整式的。运算,其中平方差公式(a+b)(a-b)=a2-b2;完全平方公式(ab)2=a22ab+b2是非常重要的内容。谁还能记得当时这两个公式是如何推出的?
[生]利用多项式乘以多项式的法则从公式的左边就可以推出右边。例如(a+b)(a-b)=a2-ab+ab-b2=a2-b2,所以平方差公式是成立的。
[生]还可以用拼图的方法来推出。例如:(a+b)2=a2+2ab+b2.我们可以用一个边长为a的正方形,一个边长为b的正方形,两个长和宽分别为a和b的长方形可拼成如下图所示的边长为(a+b)的正方形,那么这个大的正方形的面积可以表示为(a+b)2;又可以表示为a2+2ab+b2.所以(a+b)2=a2+2ab+b2.
下一篇:春江花月夜教案4篇