《有理数的乘方》精编教案【实用5篇】

网友 分享 时间:

【路引】由阿拉题库网美丽的网友为您整理分享的“《有理数的乘方》精编教案【实用5篇】”文档资料,以供您学习参考之用,希望这篇范文对您有所帮助,喜欢就复制下载支持吧!

有理数的乘方教案【第一篇】

一、 学什么

1、 知道乘方运算与乘法运算的关系,会进行有理数的乘方运算。

2、 知道底数、指数和幂的概念,会求有理数的正整数指数幂。

二、 怎样学

归纳概念

n个a相乘aaa= ,读作: 。 其中n表示因数的个数。

求 相同因数的积的运算叫作乘方。乘方运算的结果叫幂。

例1:计算

(1)26 (2)73 (3)(3)4 (4)(4)3

例2:(1) ( )5 (2)( )3 (3)( )4

想一想1.(1)10,(1)7,( )4,( )5是正数还是负数?

2、负数的幂的符号如何确定?

思考题:1、(a2)2+(b+3)2=0,求a和b的值。

2、计算 ( 2)20 09 +(2)20xx

3、在右 边的33的方格中,现在以两种不同的方式往方格内放硬币,一种每格放100枚,三 学怎样

1、某种细菌在培养过程中,细菌每半小时分裂一次(由分裂成两个),经过两个小时,这 种细菌由1个可分裂成( )

A 8个 B 16个 C 4个 D 32个

2、一根长1cm的绳子,第一次剪去一半。第 二次剪去剩下的一半,如此剪下去,第六次剪后剩下的绳子长度为( )

A ( )3m B ( )5m C( )6m D( )12 m

3、()3,()4,()5的从小到大的顺序是 。

4、计 算

(1)(3)3 (2)()2 (3)02004 (4 )12004

(5)104 (6)( )5 (7)-( )3 (8) 43

(9)32(3)3+(2)223 (10)-18(3)2

5、已知(a2)2+|b5|=0,求(a)3( b)2.

有理数的乘方(第2课时)

一、学什么

会用科学计数法表示绝对值较大的数。

二、怎样学

定义:一般地,一个大于10的数可以写成 的形式,其中 ,n是正整数,这种记数法称为科学记数法。

例题教学

例1:1972年3月美国发射的先驱者10号,是人类发往太阳系外的第一艘人造太空探测器。截至20xx年12月人们最后一次收到它发回的信号时,它已飞离地球1220000000 0km。用科学记数法表示这个距离。

例2:用科学记数法表示下列各数。

(1)10000000 (2) 57000000 (3) 123000 0000 00

例3.写出下列用科学记数法表示的数的原数。

思考:比较大小

(1) 与

(2)与 0

学怎 样

1、用科学记数法表示314160000得 ( )

B. C. 0 D.

2、稀土元素有独特的性能和广泛的应用,我国的稀土资源总储藏量约为1050000000吨,是全世界稀土资源最丰富的国家,将1050000000吨用科学记数法表示为( )

吨 B. 吨 08吨 D. 0吨

3、人类的遗传物质是DNA,DNA是很 大的链,最短的22号染色体也长达30000000个核苷酸,3000000 0用科学记数法表示为 ( )

B. 3107 D.

4、第五次全国人口普查结果表示:我国的总人口已达到13亿。请用科学记数法表示13亿为 。

5 。比较大小:

108 ; 。

6、用科学记数法表示下列各数。

(1)32000 (2) -80000000 000 (3) (4)- 389999900000000

初一数学《有理数的乘方》教案【第二篇】

1. 教学目标

知识与技能:

①通过现实背景理解有理数乘方的意义,能进行有理数乘方的运算

②已知一个数,会求出它的正整数指数幂,渗透转化思想;

③培养观察、归纳能力,以及思考问题、解决问题的能力,切实提高运算能力。

过程与方法:

①经历“做数学”和“用数学”的过程,感受数学的奇妙性;

②领会数学建模思想,归纳思想,形成数感、符号感、发展抽象思维。

情感态度与价值观 :

①认识数学与生活的密切联系,体验数学活动充满着探索与创造感受数学的严谨性,提高数学素养。

② 通过参与数学活动,对数学有好奇心和求知欲,形成主动学习态度,培养科学探索精神,提高人文素质,鼓励猜想,倡导参与,与人合作,学会倾听、欣赏和感悟,建立自信心。

2.教学重点/难点

教学重点

①理解有理数乘法的意义和表示方法。

②会进行乘方运算。

教学难点

①幂、指数、底数的概念及其表示,理解有理数乘方运算与乘方间的联系,处理好负数的乘方运算。

②用乘方知识解决实际问题。

4.教学策略

本节课采用“启发引导、动手操作、分析讲解”的教学方式,亲身经历将实际问题抽象成数学模型并进行解释和运用的过程。在教学中注意发现问题、思考问题,寻找解决问题的方法。鼓励自主探索、逐步递进。积极参与讨论、合作学习,肯定成绩,激发学习兴趣和积极性。

5.教学用具

纸片模型

6.教学过程

教学进程 教学内容 学生活动 设计意图 创设情境,导入新课 多媒体展示

教者结合多媒体引导学生探究问题:

能否用算式表示这种关系

问题一:细胞分裂问题:

某种细胞每过30分钟便由1个分裂成2个。经过3小时,这种细胞由1个能分裂成多少个?

问题二:问题二:

边长为a的正方形的面积为 ;

棱长为a的正方体的体积为 ;

学生动手操作,

回想情景,发现规律

目的是培养学生的观察及归纳能力

让学生亲历每个因数都相同时的乘法,书写起来的冗长,所以才需要创造一种简单的形式

学习新知

2个4相加可记为:4+4=4×2

6个2相加可记为:2+2+2+2+2+2=6×2

4个a相加可记为:a+a+a+a=4a

n个a相加可记为:a+a+a+……+a=na

类比可得:

64个2相乘可记为: 264

n个a相乘又记为什么呢?

定义:一般地,我们把几个相同的因数相乘的运算叫做乘方,乘方的结果叫做幂。 如果有n个a相乘,可以写成 ,也就是 EMBED Unknown

其中 叫做 的n次方,也叫做 的n次幂。 叫做幂的底数 可以取任何有理数;n叫做幂的指数,可以取任何正整数。

特殊地, 可以看作 的一次幂,也就是说 的指数是1.

例如: 读作-2的4次方或-2的4次幂;底数是-2,指数是4;表示4个-2相乘。 x看作幂的话,指数为1,底数为x.

注意:当底数是负数或分数时,写成乘方形式时,必须加上括号。

在学生理解有理数的乘方的意义的情况下,提供例1,指导学生完成,巩固概念的理解。

1.(口答)

把下列相同因数的乘积

写成幂的形式,并说出底数和指数:

(1) (-6)×(-6) ×(-6)

(2) × × ×

⑶ EMBED Unknown 的底数是_____,指数是_____,它表示______;

⑷ 的底数是______,指数是______,它表示______;

⑸ 的底数是______,指数是______,它表示_______;

例1.计算:

(1)(-3)2 (2)

SHAPE MERGEFORMAT

例3. 解决实际问题:

将一张足够长的厚度为的纸对折后裁开,叠放在一起,再同时对折裁开,继续叠放在一起,继续对折、裁开、叠放,这样进行20次,能有多高?有人说比30层楼房还要高,你相信吗?

分析:每层楼房按3米计算

(1)毫米×220=毫米×1048576

=米

÷3≈

(2)如果连续进行30次,会比12个珠穆朗玛峰还要高!?你信吗?

毫米×230=毫米×1073741824

=米

×12=米

《有理数的乘方》优秀教案【第三篇】

教学目标:

1、知识与技能:

了解科学记数法的意义,会用科学记数法表示绝对值比较大的数。

2、过程与方法:

在科学记数法中,其中a是整数位只有一位的数,n是原数的整数位数减1。

重点、难点:

1、重点:用科学记数法表示绝对值较大的数。

2、难点:熟练用科学记数法表示绝对值较大的数。

教学过程:

一、创设情景,导入新课

太阳的半径大约是696000千米;光的速度大约是300000000米/秒。这些数读、写都有困难,可把696000记作{}6×105,这就是科学记数法。

二、合作交流,解读探究

1、填空

= , = , =

×= ,×= ,×=

2、学生探究:从前面的填空可知:

100=, 1000=, 10000=280=×,2800=×,28000=×

从上面你能发现什么规律吗?

(1)10的指数比原数的整数位少1,一个数可以写成一个整数位数只有一位的数与10的n次幂相乘的形式。

三、应用迁移,巩固提高

1、做一做:课本P44例2

解答见教材,注意10的指数比原数的整数位少1

2、科学记数法:把一个绝对值大于10的数记成的形式,其中a是整数数位只有一位的数,这种记数法叫做科学记数法。

3、做一做:用科学记数法表示下列各数:

(1) 108000;(2)-3200000

两生上台练习,指出学生存在的错误,如对科学记数法中a的要求理解的错误。

4、P44练习第1、2、3题

四、总结反思

用科学记数法表示时要注意:(1)a是整数位只有一位的数,(2)10的指数n比原数的整数位数少1。

五、作业:P45习题组第3、4、5题

数学教案-有理数的乘方【第四篇】

再做一组练习(出示投影3)

计算:(1),,;

(2),,;

(3),,.

学生活动:学生在练习本上独立完成后,同桌交换,互相纠正.然后,教师引导学生纵向观察(1)题和(2)题的形式和计算结果有什么区别?中底数是-3,而题中,底数是3.因此,.可见,以负数作为底数时,这个负数必加括号,而不加括号的底数一定不是负数.

师:哪位同学能用乘方的一般式说明这个问题呢?

生:的底数是,表示个相乘,是的相反数,这就是与的区别.

师:引导学生观察(3)题,与两者从意义上截然不同:

,而.因此,要特别注意:当底数是分数时,这个分数一定要加括号,不加括号的底数不是分数.计算带分数的乘方一般应化为假分数.

教法说明同桌之间相互纠正,有时比师生之间的纠正效果会更好.通过学生实际计算、纠错,让他们自己体会到负数与分数的乘方要加括号.这样,学生自己获得的知识和方法,理解得更深刻,并能灵活运用.

(三)变式训练,培养能力

(出示投影4)

计算:

(1),,,,;

(2),,,;

(3),,,.

教法说明练习题的设计分层次,既注重基础知识,又注重了能力的培养,组织课内练习,获取学生掌握知识的反馈信息,对于学生存在的问题及时回授.

(四)课堂小结

师:今天我们一起学习了有理数的乘方.有理数的乘方运算可以利用有理数的。乘法运算来进行.乘方与乘法有联系也有区别:联系是乘方本质是乘法,区别是乘方中积的因数要相同.为了更好地理解这一点,我们看下面的对比:

(出示投影5)

作乘法运算看 作乘方运算看

2×2×2=8

因数是2 底数是2

因数的个数为3 指数是3

积是8 幂是8

教法说明小结揭示出乘方与乘法这两个知识点的联系,并找出它们之间的共同点和不同点,使学生将乘方知识与头脑中乘法的认识结构建立联系,从而形成新的知识体系.

(五)思考题

(出示投影6)

1.3的平方是多少?-3的平方是多少?平方得9的数有几个?有没有平方得-9的有理数?

2.已知,则.

3.计算.

教法说明这组题目是让学有余力的学生应有所追求,进一步激发学生探索的热情,有利于发展他们的数学才能.2题是非负数和有理数乘方两知识点的综合应用,有助于培养学生分析问题和解决问题的能力.3题向学生渗透分类讨论的思想.

八、随堂练习

1.判断题

(1)中底数是,指数是2( )

(2)一个有理数的平方总是大于0的( )

(3)( )

(4)( )

(5)( )

(6)若,则( )

(7)当时,( )

(8)平方等于本身的数是0和1( )

2.填空题

(1)的意义是__________________,结果为________________;

(2)的意义是__________________,结果为________________;

(3)若且,则;

(4)若,则,,;

(5)平方小于10的整数有__________个,其和为___________,积为___________.

九、布置作业

课本第113页4、5.

十、板书设计

七年级数学《有理数的乘方》教案设计【第五篇】

教学目标:

1.通过现实背景理解有理数乘方的意义,能进行有理数乘方的运算。

2.已知一个数,会求出它的正整数指数幂,渗透转化思想。

3.培养学生观察、归纳能力,以及思考问题、解决问题的能力,切实提高学生的运算能力。

教学重点:正确理解乘方的意义,能利用乘方运算法则进行有理数乘方运算。

教学难点:准确理解底数、指数和幂三个概念,并能进行求幂的运算。

教学过程设计:

(一)创设情境,导入新课

提问并引导学生回答:在小学里我们学过一个数的平方和立方是如何定义的?怎样表示?

a·a记作a2,读作a的平方(或a的2次方),即a2=a·a;a·a·a记作a3,读作a的立方(或a的3次方),即a3=a·a·a.(分别是边长为a的正方形的面积与棱长为a的正方体的体积)

(多媒体演示细胞分裂过程)某种细胞,每过30分钟便由1个分裂成2个,经过5小时,这种细胞由1个分裂成多少个?

1个细胞30分钟分裂成2个,1个小时后分裂成2×2个,小时后分裂成2×2×2个,…,5小时后要分裂10次,分裂成个,为了简便可将记作210.

(二)合作交流,解读探究

一般地,n个相同的因数a相乘,即,记作an,读作a的n次方。

求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。在an中,a叫做底数,n叫做指数,当an看作a的n次方的结果时,也可读作a的n次幂。

说明:(1)举例94来说明概念及读法。

(2)一个数可以看作这个数本身的一次方,通常省略指数1不写。

(3)因为an就是n个a相乘,所以可以利用有理数的乘法运算来进行有理数的乘方运算。

(4)乘方是一种运算,幂是乘方运算的结果。

(三)应用迁移,巩固提高

例1(1)(-4)3;(2)(-2)4;(3)-24.

点拨:(1)计算时仍然是要先确定符号,再确定绝对值。

(2)注意(-2)4与-24的区别。

根据有理数的乘法法则得出有理数乘方的符号规律:

负数的奇次幂是负数,负数的偶次幂是正数;

正数的任何次幂都是正数,0的任何正整数次幂都是0.

例2计算:

(1)()3;     (2)(-)3;

(3)(-)4; (4)-;

(5)-22×(-3)2; (6)-22+(-3)2.

(四)总结反思,拓展升华

1.引导学生作知识小结:理解有理数乘方的意义,运用有理数乘方运算法则进行有理数乘方的运算,熟知底数、指数和幂三个基本概念。

2.教师扩展:有理数的乘方就是几个相同因数积的运算,可以运用有理数乘方法则进行符号的确定和幂的求值。

乘方的含义:(1)表示一种运算;(2)表示运算的结果。乘方的读法:(1)当an表示运算时,读作a的n次方;(2)当an表示运算结果时,读作a的n次幂。

乘方的符号法则:(1)正数的任何次幂都是正数;(2)零的任何正整数次幂都是零;(3)负数的偶次幂是正数,奇次幂是负数。注意(-a)n与-an及()n与的区别和联系。

(五)课堂跟踪反馈

1.课本P42练习第1、2题。

2.补充练习

(1)在(-2)6中,指数为    ,底数为    .?

(2)在-26中,指数为    ,底数为    .?

(3)若a2=16,则a=    .?

(4)平方等于本身的数是    ,立方等于本身的数是    .?

(5)下列说法中正确的是(  )

A.平方得9的数是3

B.平方得-9的数是-3

C.一个数的平方只能是正数

D.一个数的平方不能是负数

(6)下列各组数中,不相等的是(  )

A.(-3)2与-32 B.(-3)2与32

C.(-2)3与-23 D.|2|3与|-23|

(7)下列各式中计算不正确的是(  )

A.(-1)2003=-1

B.-12002=1

C.(-1)2n=1(n为正整数)

D.(-1)2n+1=-1(n为正整数)

(8)下列各数表示正数的是(  )

A.|a+1| B.(a-1)2

C.-(-a) D.||

第2课时 有理数的混合运算

教学目标:

1.了解有理数混合运算的意义,掌握有理数的混合运算法则及运算顺序。

2.能够熟练地进行有理数的加、减、乘、除、乘方的运算,并在运算过程中合理使用运算律。

教学重点:根据有理数的混合运算顺序,正确地进行有理数的混合运算。

教学难点:有理数的混合运算。

教学过程:

一、有理数的混合运算顺序:

1.先乘方,再乘除,最后加减。

2.同级运算,从左到右进行。

3.如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。

例1计算:

(1)(-2)3+(-3)×[(-4)2+2]-(-3)2÷(-2);

(2)1-×[3×(-)2-(-1)4]+÷(-)3.

强调:按有理数混合运算的顺序进行运算,在每一步运算中,仍然是要先确定结果的符号,再确定结果的绝对值。

例2观察下面三行数:

-2,4,-8,16,-32,64,…;①

0,6,-6,18,-30,66,…;②

-1,2,-4,8,-16,32,….③

(1)第①行数按什么规律排列?

(2)第②③行数与第①行数分别有什么关系?

(3)取每行数的第10个数,计算这三个数的和。

例3已知a=-,b=4,求()2--(ab)3+a3b的值。

二、课堂练习

1.计算:

(1)|-|2+(-1)101-×()÷;

(2)1÷(1)×(-)÷(-12);

(3)(-2)3+3×(-1)2-(-1)4;

(4)[2-(-)3]-(-)+(-)×(-1)2;

(5)5÷[-(2-2)]×6.

2.若|x+2|+(y-3)2=0,求的值。

3.已知A=a+a2+a3+…+a2004,若a=1,则A等于多少?若a=-1,则A等于多少?

三、课时小结

1.注意有理数的混合运算顺序,要熟练进行有理数混合运算。

20 566817
");