《植树问题》教案(精编5篇)

网友 分享 时间:

【阅读指引】阿拉题库网友为您分享整理的“《植树问题》教案(精编5篇)”范文资料,以供您参考学习之用,希望这篇文档对您有所帮助,喜欢就下载分享给大家吧!

小学数学植树问题教案1

教学目标:

1. 使学生通过生活中的事例,初步体会解决植树问题的方法。

2. 初步培养学生从实际问题中探索规律,找出解决问题的有效方法 的能力。

3. 让学生感受数学在日常生活中的广泛应用,培养学生的应用意识 和解决问题的能力。

教学重点:

用解决植树问题的方法解决实际问题。

教学难点:

栽树的棵数与间隔数之间的关系。

教具准备:

多媒体。

设计理念:新课标指出:“有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。”同时指出:“学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。”结合新课标的要求,教学中力求发挥学生的主体地位,让他们动脑、动手、合作探究,经历分析、思考、解决问题的全过程,体会植树问题这一重要的数学思想方法。

教学过程:

一、谈话导入:

师:同学们,你们喜欢植树吗?你植过树吗?(生答)植树能绿化环境,造福人类。在生活中,常常遇到在路的一边、间隔一定的距离植树,这就需要计算准备多少棵树苗。还有许多类似的问题:比如在公路两旁安装路灯、花坛摆花、站队中的方阵等等,在数学上,我们把这类问题统称为“植树问题”。

二、揭示学习目标:(媒体出示)

通过这节课的学习,我们要解决哪些问题呢?

1. 能根据相关条件,求出需要多少棵树苗或计算两树间的距离。

2. 能利用植树问题,灵活解决生活中类似的实际问题。

三、探究新知:

1. 出示例1:同学们在全长一百米的小路一边植树,每隔五米栽一棵(两端要栽)。一共需要多少棵树苗?(生读题)

师:你会计算吗?(让学生回答)你算的对吗?请同学们自己动脑来验证一下。

学习提示:(媒体出示)

①假如路长只有十米,要栽几棵树?如果路长是二十米,又要栽几棵树?请你画线段图来看看。(注意看图上有几个间隔和几个间隔点)

②通过上面的分析,你能找出什么规律?和同桌或小组内说说。

③现在你能算出一共需要多少棵树苗吗?

④你还有别的想法吗,在小组内说说。

2. 学生自学探讨。(师巡视)

3. 班内交流。学生回答后,师媒体演示间隔数和间隔点数的关系。

总结规律:栽的棵数比间隔数多1。

完成例题。

四、变化巩固:

1. 做一做:118页学生独立完成。订正时说说怎么想的,重点让学生明确先求出间隔数,即36棵树有35个间隔。

2. 122页第2题。独立完成,同桌交流想法,可一生板演。

五、检测反馈:(独立完成)

1. 在一条长400米的马路的一边,从头到尾每隔八米种一棵树。一共可以种多少棵树?

2. 五路公共汽车行驶路线全长十二千米,相邻两站的距离是一千米。一共有几个车站?

3. 从王村到李村一共设有16根高压电线杆,相邻两根的距离平均是200米。王村到李村大约有多远?

学生完成后师批阅订正,发现问题及时解决。

六、总结延伸:

这节课我们学习了植树问题,并能利用植树问题解决生活中类似的实际问题,解答时要重点分清栽树的棵数与间隔数间的关系,后面还有一些不同的情况,希望大家开动脑筋,灵活处理。

植树问题教学设计2

一、教学内容:

人教版《义务教育课程标准实验教科书数学》四年级下册“数学广角” 第117—118页。

二、教材目标:

1、通过生活中的事例,知道 “植树问题”的三种不同的情况,理解与掌握间隔数与棵数之间的关系和变化规律。

2、通过具体问题的解决过程,经历观察、比较、发现、概况等数学活动,培 养学生的研究意识和探究能力,感悟化繁为简、数形结合等数学思想方法。

3、能运用规律或研究方法解决相关的实际问题,感受数学在生活中的广泛应 用,培养学生的应用意识和解决实际问题的能力。

三、教学重点:引导学生经历规律的获得过程、建立数学模型,并用所学的方法解决一些简单的实际问题。

四、教学难点:理解间隔数 与棵数之间的关系;解决与植树问题具有相同数学模型的实际问题。

五、教学准备:学习单、多媒体课件、小树和小路模型。

六、 教学过程:

(一) 问题导入:

出示谜语:两棵小树十个杈,不长叶子不开花,能写会算还会画,天天干活不说话。让学生猜一猜:这会是什么呢?

教师组织学生认识手中的间隔,并认识它们存在的规律“间隔数+1”

(二)探究新知:

1、队列问题:

出示学生排着整齐的队伍去植树的图片,引导学生发现学生队伍中存在间隔,通过学生站一站,数一数等形式总结人数和间隔数的关系,再次对应“间隔数+1”

并出示课题。

2、植树问题:

(1)体会“化繁为简”思想:

问题导入:同学们到达目的地,又遇到难题了:在全长1260米的小路的一边植树,每隔5米植一棵,按怎样的方案植,又需要多少棵树呢?

突出矛盾:数字太大,不易思考,引导学生转换较小的数。

明确思想:当遇到复杂的问题,可以转化成简单的问题,这就是“化繁为简”的数学思想。(板书:化繁为简)

(2)设计三种植树方案:

引导学生用学具摆一摆或用线段画一画的形式,同桌两人合作设计植树方案。

①学生活动,教师巡视。

②汇报、展示:

③小结:组织学生对不同方案进行命名,突出其主要特征。

教师板书:两端都种、只种一端、两端不种

(3)探究规律:

①求间隔数:

教师引导学生发现植树过程中的间隔,总结植树棵数和间隔数的关系,再次对应“间隔数+1” 。

在没有植树的棵数时,探究间隔数与全长、间隔的关系。

组织学生独立思考,借助学具、线段图等形式探究规律

a:学生思考并摆学具或画线段或列算式。

b:汇报:

②探究间隔数与棵数的关系:

开放间隔的长度:(出示课件)在20米的小路的一边植树,每隔 米植一棵,一个需要棵树?

小组合作完成探究,活动要求:

1)自己选择适合的间隔长度,四人小组合作完成记录表。

2)小组选择一种植树方式进行探究。

3)可以借助摆学具、画线段、数手指或列算式的方式。

a:学生小组活动,教师巡视。

b:学生汇报发现规律,教师板书。

c:升华:

三种情况结果不同,但是在求解过程也存在着相同,都是先计算20÷5,这就意味着解决植树问题的关键是明确间隔数。

d:应用:

老师检查同学们的植树情况,他从第1棵树走到第20棵树时,一共走了多少米?

(三)巩固提升:

1、选一选:

下面每一题相当植树问题的哪一种情况?

(1)音乐中的“五线谱”( )

(2)衣服上的纽扣( )

(3)成语“一刀两断”()

(4)自鸣钟九点报时的钟声( )

A、两端都种 ; B、只种一端; C、两端不种。

2、 广场上的大钟5时敲响5下,4秒敲完。12时敲12下,需要 秒。 3、 小法官:

(1)学校的教学楼每层有24个台阶,老师从1楼开始一共走了72个台阶,判断:现在老师走到了3楼。( )

(2)一根10米长的木头,把它平均分成5段,锯一次需2分钟。判断:锯完一共需要10分钟。( )

4、学校一条大路的一边共插了20面彩旗。

(1)如果使两面彩旗中间放一盆花,一共要放多少盆花?

(2)如果要使两盆花之间有一面彩旗,一共要放多少盆花?

(四)课堂总结:

师:今天我们学习了什么?你有什么收获?

生活中还有哪些类似植树问题的现象呢?无论哪些问题,我们都能用今天的方法和策略进行解决,这就是数学的奥秘。

《植树问题》优秀教学设计3

单元教学目标:

1、使学生通过生活中的事例,初步体会解决植树问题的思想方法。

2、初步培养学生从实际问题中探索规律、找出解决问题的有效方法的能力。

3、让学生感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,培养学生的应用意识和解决实际问题的能力。

教学时数:4课时

数学广角植树问题(一)

第一课时教学内容:

教科书第117页118页的例1、例2

教学目标:

1、利用学生熟悉的生活情境,通过动手操作的实践活动,让学生感悟分的段数与植树棵树之间的关系。

2、通过小组合作、交流、使学生能理解段数与植树棵树之间的规律。

3、通过实践活动激发热爱数学的情感,感受日常生活中处处有数学,体验学习成功的喜悦。

教学重点、难点:

教具:

挂图、直尺

教学过程:

一、创设情境,引入课题

1、每位小朋友都有一双灵巧的小手,它不但会写字,画画、干活,在它里面还藏着有趣的数学知识,你想了解它吗?请举起你的右手,请每一位学生高举起右手,并将五指伸直,关拢。

师:现在请每位小朋友将五指张开,数一数,张开后有几个空格?(4个)

师:在数学上,我们把这个空格叫间隔。刚才,我们把五指张开,有4个空格,也就是4个间隔。

2、举例说出生活中的间隔到处可见,比如:在马路边种树,每两棵树之间有一段距离,我们就把这一段距离叫做一个间隔,楼梯、锯木头等。

3、大家清楚地看到,5个手指之间有4个间隔,那么,将手指换成小树,5棵小树之间有几个间隔(4个),6棵呢?7棵呢?

今天,我们就来学习有趣的植树问题。

(一)出示:在全长100米的小路一边植树,每隔5米栽一棵(两端要栽)。一共需要多少棵树苗?

1)同桌相互讨论。

2)有线段图表示你的方法

3)学生汇报

4)引导总结:

两端要栽的时候,比较间隔数和棵数,你得出什么规律?(生:棵树比间隔数多1)

你能用一个式子表示两端都栽的棵数和间隔数的关系吗?

板书:棵数=间隔数+1

5)在线段图上,又有怎样的关系呢?

点数=间隔数+1

6)这个问题应是:1005=20(个)间隔数

20+1=21(棵)棵数

巩固练习

(一)书第118页的做一做独立完成,指名反馈。

(二)出示:大象馆和猩猩馆相距60米。绿化队要在两馆间的小路两旁栽树,相邻两棵树之间的距离是3米,一共要栽几棵树?

1)读题,理解题。

2)分组看图讨论。

3)尝试列式计算。

4)交流:603=200间隔数

两端不栽树:20-1=19(棵)

192=38(棵)

5)质疑:

为什么减1?为什么乘2?

比较例1与例2的不同?小组讨论,再交流

例1两端要栽树,所以棵数比间隔大1:例2两端不栽树,所以棵数比间隔少1。

巩固练习二:

教科书第119页做一做1、2题

学生独立完成,集体反馈。

三、本课小结:

通过今天的学习,你有什么收获?

《植树问题》教学设计4

教材分析:

“植树问题”在实际生活中应用比较广泛,它通常是指沿着必须的路线植树,这条路线的总长度被平均分成若干个间隔,由于路线的不同以及植树要求不同,路线被分成的间隔数和植树的棵数之间的关系就不同。本节课就是要渗透有关植树问题的一些思想方法,透过学生的动手操作、自主探究来发现现实生活中它们的规律,,抽取出其中的数学模型,然后再用规律解决植树中的相关问题。教学目标:

1.使学生理解并掌握“植树问题”的基本解题方法,并能解决一些实际生活中存在的与“植树”有关的问题。

2.掌握“植树问题”中三种状况:两端都要种,两端都不种,只种一端的解题方法。

教学重难点:

掌握“植树问题”中三种状况:两端都要种,两端都不种,只种一端的解题方法。

教具学具:

绳子、挂图、泡沫、小树、题卡

教学过程:

一、创设情境,导入新课

1.小游戏:

点名学生动手操作,给绳子打3个结并观察:给绳子打3个结,会把绳子分成几个间隔?(有三种状况:4个、3个、2个)(解释“间隔”的意思)

透过刚才的游戏,你得出了什么结论?(强调结数和间隔数的三种关系)点评:透过游戏激趣,引出“间隔”、“间隔数”的概念教学,由于有绳子打结作铺垫,抽象概念得到了具体化,同时间接渗透了间隔与间隔数两者之间的关系,为探究新知打下良好的基础。

2.导入新课:这天这节课我们就来学习和间隔有关的植树问题(板书课题:植树问题)

二、新课探究:

1出示例题:(同学们,今年我们海南迎来了一件大喜事:海南国际旅游岛建设发展规划纲要获批了,为了响应海南国际旅游岛建设的号召)寰岛小学决定美化校园,要在长50米的塑胶跑道的一侧每隔5米植一棵树,一共需要准备多少棵树苗?

点评:所选例题具有很强的开放性,同时以“海南国际旅游岛建设”引入例题,体现了数学与生活紧密联系,让学生在简单愉快的生活化的课堂环境中学习数学。

2.分组动手操作(分八小组,每组6人),在泡沫上“植树”,

要求:(1)计算一共需要准备多少棵树苗

(2)思考棵数与间隔数的关系。

点评:学生亲自动手操作,并透过仔细观察、交流讨论,有效促进学生思维活动的体验以及情感的体验过程,提高了学生分析问题和解决问题的潜力,把感性认识上升为理性认识。

3.汇报结果:

(1)两端都种:50÷5+1=11(棵)结论:棵数=间隔数+1

(2)只种一端:50÷5=10(棵)结论:棵数=间隔数

(3)两端都不种:50÷5-1=9(棵)结论:棵数=间隔数-1

4、总结(学生汇报教师书写):

(1)两端都种:棵数=间隔数+1

(2)只种一端:棵数=间隔数

(3)两端都不种:棵数=间隔数-1

点评:孔子说:“吾听吾忘,吾见吾记,吾做吾捂!”学生在动手操作的过程中,仔细观察,用心思考,在操作的过程中充分体验,充分交流,加深对植树问题三种状况的理解。结论的得出也就水到渠成了。

三、课堂练习

1、做一做:

(1)园林工人要在全长800米的公路一侧植树,每隔4米栽一棵(两端都要栽)。一共需要多少棵树苗?

(2)李家庄小学从校门口的门柱到教学楼的墙根,有一条长120米的笔直的校道,在校道的一边每隔5米种一棵椰子树,一共种了多少棵椰子树?

2、数学竞技场:分组竞赛,每组派代表选题,解答对得相应的分值,解答错则机会让给其他表现好的小组,总分最高的小组获胜。

(1)挂灯笼(20分):要在长90米的教学楼上每隔5米挂一个灯笼,需要准备多少个灯笼?(两端都不挂)

(2)插彩旗(20分):校园要在长12米的国旗台前每隔2米插一面彩旗,一共需要多少面彩旗?(两端都插)

(3)上楼梯(20分):小明从一楼到三楼走了30级台阶,如果从一楼走到六楼,需要走几级台阶?

(4)公交站(30分):5路公交车行驶路线全长12千米,相邻两站的距离是2千米,一共有几个车站?

(5)锯木头(30分):一根木头长10米,要把它平均分成5段,每锯一次需要8分钟,锯完需要几分钟?

(6)街道上(50分):在一条全长2000米的街道两旁每隔50米安装一盏路灯,一共需要几盏灯?(两端都安装)

(7)滑冰场(50分):圆形滑冰场的一周全长150米,如果沿着这一圈每隔15米安装一盏灯,一共需要装几盏灯?

(8)钟表上(50分):广场上的大钟5时敲响5下,8秒钟敲完,12时敲响12下,需要多长时间?

(9)电线杆(100分):在公路一边每隔50米埋设一根电线杆,共埋设了10根(两端都埋),这段公路有多长?

(10)广告牌(100分):在马路的一侧立有广告牌,若每隔5米立一块广告牌,一共立21块,从第一块到最后一块的距离有多远?

点评:设计形式新颖、有梯度、富有情境化和生活趣味的练习题,激发了学生的学习兴趣,充分调动了学生的解决问题的用心性,同时充分地体现了数学与生活的紧密联系,使数学回归生活,

四、全课小结:

这节课我们学习了什么资料?你还有什么疑问?(植树问题的三种状况)

五、板书设计

植树问题

两端都种:棵数=间隔数+1

只种一端:棵数=间隔数

两端都不种:棵数=间隔数-1

例题:寰岛小学决定美化校园,要在长50米的塑胶跑道的

一侧每隔5米植一棵树,一共需要准备多少棵树苗?

两端都种:50÷5+1=11(棵)

只种一端:50÷5=10(棵)

两端都不种:50÷5-1=9(棵)

(1)挂灯笼:要在长90米的教学楼上每隔5米挂一个灯笼,需要准备多少个灯笼?(两端都不挂)

(2)插彩旗:校园要在长12米的国旗台前每隔2米插一面彩旗,一共需要多少面彩旗?(两端都插)

(3)上楼梯:小明从一楼到三楼走了30级台阶,如果从一楼走到六楼,需要走几级台阶?

(4)公交站:5路公交车行驶路线全长12千米,相邻两站的距离是2千米,一共有几个车站?

(5)锯木头:一根木头长10米,要把它平均分成5段,每锯一次需要8分钟,锯完需要几分钟?

(6)街道上:在一条全长2000米的街道两旁每隔50米安装一盏路灯,一共需要几盏灯?(两端都安装)

(7)滑冰场:圆形滑冰场的一周全长150米,如果沿着这一圈每隔15米安装一盏灯,一共需要装几盏灯?

(8)钟表上:广场上的大钟5时敲响5下,8秒钟敲完,12时敲响12下,需要多长时间?

(9)电线杆:在公路一边每隔50米埋设一根电线杆,共埋设了10根(两端都埋),这段公路有多长?

(10)广告牌:在马路的一侧立有广告牌,若每隔5米立一块广告牌,一共立21块,从第一块到最后一块的距离有多远?

教学后记:

本节课旨在透过学生的学习活动让学生发现数学规律,建立植树问题的数学模型,理解“棵数”与“间隔数”的关系,从而发展学生的数学应用意识,培养学生主动探究和合作学习的精神,最终掌握植树相关问题的解决办法。总的来说,本节课学生参与面广,用心性和主动性得到充分发挥,课堂效率也高,较好地展示了动手操作、合作学习的优势,主要体现了以下几点:

一、动手操作、合作交流、探究规律:

本节课,学生以小组为单位,利用手中的学具设计不同的植树方案,有利于学生发挥小组交流合作的优势,学生在相互的表达和倾听中促使思路的清晰化,促进知识结构的构成,提高了学生的思维水平,完善了学生的认知结构。

二、练习的设计独特、新颖、有梯度:

本节课的教学我既注重教学过程,也注重教学效果。在练习环节中,我设计了有梯度的练习,体现了分参次教学。同时我还从不同的角度引导学生运用所学知识解决一些生活中常见的植树相关问题,有效实现了生活问题数学化、数学问题生活化的目的。由于练习的解答采取竞赛的方式,充分调动了学生学习的用心性,优化了课堂教学效果,大大提高了课堂教学效率。(数学竞技场的练习题学生大约能够做5道题,其余的题可留到第二课时再完成。)

三、充分体现学生的主体作用及教师的主导作用:

本节课,我透过引导学生动手操作(模拟植树)------交流讨论(植树方案)------得出结论(三种植树问题的解决方法)-----应用结论(解决生活中植树的相关问题),充分体现学生的主体作用,教师只是做了适时的点拨。

《植树问题》教案5

教学目标

1、借助围棋盘探讨封闭曲线(方阵)中的植树问题。

2、初步培养学生从实际问题中探索规律,找出解决问题的有效方法的能力。

3、让学生感受数学在日常生活中的广泛应用。

教学重难点

教学重点

从封闭曲线(方阵)中探讨植树问题。教学难点:用数学的方法解决实际生活中的简单问题。

教学过程

一、复习旧知,情境导入(课件出示)

(1)在100米的小路边,每隔5米种一棵柳树,两端都要种,一共种了多少棵?

(2)校园图书馆和体育馆两栋楼之间长40米,每隔4米种一棵柏树,一共种了多少棵?师:(第一题)1000÷20求的是什么?为什么要加1?(两端都栽:棵数=间隔数+1)师:40÷4求的是什么?又为什么要减1呢?(两端不栽:棵数=间隔数—1)。让学生说出每个算式所表示的意义。

你能说说棵数与间隔数之间的关系

二、探索新知。

1、圆形花坛的一周全长12米,如果沿着这一圈每隔2米摆放一盆花,一共需要多少盆花?

板书课题:封闭图形的植树问题

2、运用规律。圆形花坛的一周全长12米,如果沿着这一圈每隔2米摆放一盆花,一共需要多少盆花?

(1)引导学生读题,理解题意。独立完成。

(2)理解圆形的株数与间隔数相等,列出算式:12÷2=6(盆)

3、课件出示一个圆形,在圆形的花坛上种树,棵数=间隔数

4、发现规律:在圆形的花坛上种树,棵数=间隔数。

圆形花坛的`一周全长50米,如果沿着这一圈每隔2米摆放一盘花,一共需要多少盘花?

5、学习例题:

(1)课件出示例题。例:在围棋的每边都放19个旗子,最外层一共可以放多少个旗子?(2)生读题,独立列出算式

学生小组合作,寻求解决问题的方法。学生自主探索会出现如下几种方法:

方法1:直接点数出最外层一共可以摆放72个棋子。

方法2:列式:19×2+(19—2)×2=72(个)

方法3:列式:(19—1)×4=72(个)

方法4:列式:4+(19—2)×4=72(个)

方法5:列式:19×4—4=72(个)

以上方法,教师引导比较:除方法1外,其余算法都抓住了4个角上的棋子不能重复计算的关键点。

6、探究规律。

(1)首先理解封闭图形围棋盘的最外层是一个正方形,像这样首尾相连没有开口的图形就是封闭图形。(课件出示)

(2)提问:我们学过的封闭图形有哪些?根据学生的回答课件出示部分学过的封闭图形。学生任选一个,用小圆点代替棋子在封闭图形中画一画,数一数,想一想,会有怎样的发现?(3)引导学生运用数形结合思想寻找规律,学生交流说出:棋子数=间隔数的结论。

提问:这和我们学过的哪种植树情况一样呢?(帮助学生进行新旧知识的链接,迁移到一端栽一端不栽的植树情形。)这是巧合吗?想不想继续研究?学生研究发现:如果将画好的封闭图形沿着一圆点断开拉直就变成一端栽一端不栽的植树问题模型,利用原理逆向思维再次验证棋子数=间隔数这一规律。

(4)回到原题:围棋盘最外层每边有19个棋子,即每边有(19—1)个间隔,4边共有18×4=72(个)间隔。因为最外层的棋子数=间隔数,所以72个间隔也就说明有72个棋子。列式:(19—1)×4=72(个)

(5)请一学生板演,并说出每个算式所表示的意义19—1=18(段)————表示19个旗子有18段间隔18×4=72(个)————表示最外层的总数答:最外层一共可以放72个旗子。(6)引导学生说出公式:最外层的总数=(每边的棵树—1)×边数

7、运用规律解决问题。

(1)摆棋子:一个四边形,每个顶点都摆一个。

(2)如果最外层每边能放100个,最外层一共可以摆放多少个棋子?

设问:100—1求的是什么?乘4呢?(为什么要乘4?)

(3)如果最外层每边能放200个,最外层一共可以摆放多少个棋子?

(4)如果在一个正五边形的边上摆,怎么算?一个三角形呢?

小结:看来,在封闭图形中的植树,只要先求出每边间隔数,再乘边数就可以求出最外层的总棵树。但是要注意在求每边间隔数时,要用棵数减1,你知道为什么吗?

8、摆花盆:完成做一做第2题问题:

沿正方形的池塘边植树,要求每边都植4棵,一共需要多少棵树苗?

三、巩固延伸

解决问题:

1、沿一个正三角形实验田的外边,每边种8棵向日葵最少能种几棵?

2、16名学生在操场上做游戏,围成一个正方形,每边人数相等。四个顶点都有人,每边各有几名学生?若相邻两个同学之间相隔1米,围成的正方形的边长是多少米?

课后延伸题

1、“四(4)班”召开班会时,同学们围坐在一起,如果每边做5人,(如下图),这个班一共有多少个同学?每边都有5张课桌,一共要多少张课桌子?

2、公园里的花坛有以下几种形状,请选择一种你最喜欢的形状,计算一下如果每边放4盆花,至少一共可以摆放多少盆花?

四、全课小结师:同学们,马上就要下课了,这节课你又收获吗?一起来分享分享吧?封闭图形的植树问题,株数=间隔数

最外层总数=间隔数×边数

五、作业布置

教材122页的第4、6、7、8题

20 2442634
");