植树问题教案精编4篇

网友 分享 时间:

【前言导读】这篇优秀教案“植树问题教案精编4篇”由阿拉题库网友为您精心整理分享,供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载吧!

植树问题教案1

教学内容:教科书106页例1及相关内容。

教学目标:

1.通过猜测、实验、验证等数学探究活动,使学生初步体会两端都栽的植树问题的规律,构建数学模型,解决实际生活中的有关问题。

2.培养学生通过“化繁为简”从简单问题中探索规律,找出解决问题的有效方法的能力,初步培养学生的模型思想和化归思想。

教学重点:

发现并理解两端都栽的植树问题中间隔数与棵树之间的关系。

教学难点:

运用“植树问题”的解题思想解决生活中的实际问题。

教学准备:多媒体课件、直尺、学习纸。

教学过程:

一、 谜语引入做铺垫:

1.师:同学们,记得上一次上课前老师给同学们除了一个谜语,同学们一下子就猜出来了,今天老师又带来了一个谜语。

师说谜语,学生回答(手)

师:真厉害!现在举起你们的右手,手心向我,尽量把五指张开,大家看,每两个手指间都有一段?(距离)。在数学中,我们把这一段距离就叫做一个间隔。(板书:间隔)5个手指间有几个间隔呢?(4个),4个手指呢?(3个),3个手指呢?(2个),2个手指呢?(1个)。好,同学们可以把手放下了。

2.现在请第一小组的前5位同学站起来,站起来的这5位同学之间有没有间隔?(有)。从第一位同学到最后一位,一共有几个间隔呢?(4个)后面一位同学也请站起来,现在有几位同学?几个间隔呢?(6位,5个),再站起来一位,现在是?(7位同学,6个间隔)。好,请坐,谢谢你们。

手指之间有间隔,刚才站起来的同学间有间隔,我们在植树时,树与树之间也要有间隔,那么今天我们就以植树为例探讨与间隔数有关的问题。

板书课题:植树问题

二、探索新知

1.出示例题:植树节到了,同学们要在100m的小路一边植树,每隔5m栽一棵(两端要栽)。一共要栽多少棵树?

2.理解题意:

师:在这道题中,你们发现了什么数学信息?

生回答(总长度100m,5m一棵)。课件演示。

师:每隔5m一棵是指两棵树之间的距离是5m,我们把这个距离叫做间隔长度。

师:还要注意哪些重要的信息?生:一边。师:一边是什意思?路有左右两边,只要在一边栽树,另一边不栽。生:两端要栽。师:路的起点和终点都要栽。

课件演示。

3.学生猜想:

师:你们猜一猜,一共要栽多少棵树?谁来说说。

生回答。怎样得到的。师板书:100÷5=20(棵)等等。

师:到底要栽多少棵呢?哪一种猜想是对的,我们要检验一下,你们认为怎样检验?(画图)100m的小路每5m画一棵,5m画一棵,这样画下去你们觉得?(太麻烦)。为什么麻烦?(100里面有20个5m),怎么办呢?

像这样数据大、比较复杂的问题,我们可以先从简单的情况入手进行研究,我们可以选择100m中的一小段,如果是15m的小路,可以栽几棵?20m呢?

4.学生操作:

师:请同学们拿出学习纸,我们用线段表示小路,把小路的长度缩小100倍,学习纸上15cm的线段表示15m的小路。20cm表示20m,我们用5cm一个间隔表示5m一个间隔。可以用你喜欢的图案表示一棵树。画好后,完成下面的表格。

学生操作。师巡视。画好的`互相检查。

5.学生汇报:

师:请一个同学汇报一下结果,15m的小路?生:3个间隔,4棵树。

师:同意吗?我们来演示一下栽的情况。首先起点处栽一棵,隔5m栽一棵。

第3棵树时,师问:还要栽吗?(要)为什么?(两端都要栽)起点栽一棵,终点也就是末尾也要栽一棵。

大家看,15里面有几个5m?(3个),也就是3个间隔。1、2、3,3个间隔,1、2、3、4,4棵树。3个间隔4棵树。刚才那位同学的回答是正确的。20m的小路?(4个间隔,5棵树)。我们来看,(课件演示)还是5m一个间隔,终点还要栽一棵。20里面有几个5m?(4个)几棵树?(5棵)。4个间隔5棵树,回答正确。

6.尝试列式:

师:你发现了什么规律,不画图,你知道25m要栽几棵树吗?试一试。

学生尝试列式。汇报,师板书:25÷5=5(个间隔)5+1=6(棵)

学生说列式想法:5m一个间隔,25m里有几个5m就有几个间隔,求出的是间隔数,棵数比间隔数多1,所以要加1。

师:为什么要加1,你怎么知道棵数比间隔数多1(从刚才表格得到的规律)你们同意吗?(同意)。

7.理解规律:

如果说5个间隔就栽5棵树会出现什么情况呢?我们来看,一个间隔对应一棵树,5个间隔就是5棵树,这样栽完了吗?(没有)为什么?(末尾没栽,这是一端栽一端不栽)5个间隔栽5棵树行吗?(不行),应该栽几棵?(6棵)。

要使两端都栽树,棵树和间隔数有一个怎样的关系呢?谁来说。

(棵树比间隔数多1,反过来,间隔数比棵树少1)

8.巩固强化,得出结论:

师:同学们都明白了两端都栽的情况下,棵树和间隔数之间的关系,现在老师出几道题考考大家,7间隔栽几棵树?20个间隔栽几棵树?9棵树之间有几个间隔?20棵树之间有几个间隔?非常好!

如果用一个等式来表示间隔数和棵数之间的关系,应该怎样写?

间隔数+1=棵树(棵树—1=间隔数)

大家把这个关系齐说一次。

要求棵数必须要知道?(间隔数)

已知总长度和间隔长度怎样求间隔数?

总长度÷间隔长度=间隔数齐读一次。

9.运用方法,验证例题:

师:现在我们回到例题,100m的小路一边植树,每隔5m栽一棵(两端要栽),到底要栽多少棵树?你猜对了吗?

看看黑板上这种做法对吗?生回答,集体讲评。课件出示正确列式。

三、巩固练习:

1.同学们在全长400m的小路一边植树,每隔8m栽一棵树(两端要栽),一共要栽多少棵树?

学生完成,板演,讲评。、

把一边改为两旁,生独立完成,集体讲评。

2. 工人叔叔正在架设电线杆,相邻两根间的距离是200m。在总长3000m的笔直路上,一共要架设多少根电线杆(两端都架设)?

师:这道题和我们今天学的植树问题有联系吗?(有)谁来说一说。

生回答,师引导找到联系,在课件上标示。

学生独立完成,板演,集体讲评。

3.在一条笔直的公路一侧植树,每隔6m种一棵,一共种了36棵。从第一棵到最后一棵的距离有多远?

学生独立完成,师提醒:先求间隔数。

四、课堂小结。

(略)

植树问题教案2

个人简介:陈智敏,男,30岁,本科学历,小学高级教师,现任乐清市雁荡镇一小副校长。先后被评为乐清市教坛新秀、温州市首届学科骨干教师,两次荣获乐清市先进教育工作者称号。20xx年获得乐清市优质课一等奖,并多次承担温州市、乐清市教研室组织的送教下乡活动、乐清市级公开课教学和新课程专题讲座,所撰写的论文、案例多次在乐清市、省级获奖及发表。

教学内容:人教版实验教材四下P117-P118页《植树问题》例1、例2

教学目标

1、使学生通过生活中的事例,初步体会解决植树问题的思想方法。

2、初步培养学生从实际问题中探索规律、找出解决问题的有效方法的能力。

3、让学生感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,培养学生的应用意识和解决实际问题的能力。

教学重点

理解种树棵树与间隔数之间的`关系,会应用植树问题的模型解决一些相关的实际问题。

教学难点

应用植树问题的模型灵活解决一些相关的实际问题。

设计理念

新课标实施,数学教材进行了相应的改革,数学思想方法的重要性更为彰显。每册教材通过“数学广角”来进一步渗透数学学习的思想、方法,加强学生综合运用知识的能力,逐步提高解决问题的能力。在植树问题的教学中,解题不是主要的教学目的,主要的任务是向学生渗透一种思想,一种在数学上、在研究问题上都很重要的思想--化归思想。

本课的设计,主要根据教学内容的特点,及学生的实际情况,引导学生积极参与,通过开放性的设计,让学生在设计植树方案的过程中通过画图亲身体验在三种种植情况下,选择的间隔不同,但棵数与间隔数之间都存在一定的关系。通过学生的体验,建构植树问题的模型,再运用模型解决生活中的类似问题。教学中重在让学生体验知识获得的过程,更注重于培养学生运用所学知识,举一反三,解决实际问题的能力。

教学过程

一、新课导入

1、师:大家知道3月12日是什么节日吗?(植树节)那么今天我们就一起来研究植树中的数学问题。

板书课题:植树问题

二、引导探究

1、创设情境,理解概念

(1)出示:“为了美化环境,学校准备在操场边上的一条100米长的小路一边植树,总务主任需要准备多少棵树苗呢?

(2)理解题意。

a.读题,从题中你了解到了哪些数学信息?有什么问题?

b.理解”间隔“的意思?

C、理解三种种植情况

(两端都种、一端种、两端不种)

2、主动探索,发现规律

(1)计算你的设计需要多少棵树苗?利用画线段图把它表示出来吗?并将植树方案补充完整

植树方案

总长(米)

间隔(米)

间隔数 (个)

棵数(棵)

种植情况示意图

(2)学生反馈

(3)组织讨论:你发现什么规律?

两端都种时,棵数=间隔数+1

一端种是时,棵数=间隔数

两端不种时,棵数=间隔数-1

3、应用规律,解决问题

(1)出示例2:

(2)读题后思考,有什么地方需要提醒同学值得注意的。

(3)学生独立解题、反馈

三、回归生活,变式练习

1、封闭图形相当于一端种

(1)出示P122练习二十第4题

圆形滑冰场的一周全长150米,如果沿着这一圈每隔15米安装一盏灯,一共需要装几盏灯?

(2)讨论:封闭图形相当于植树问题中的哪个类型?

(3)学生独立解题,反馈。

2、同时出示两道习题:

(1)锯木头问题(两端都不种)

一根木头,要把它平均分成5段,每锯下一段需要8分钟,锯完一共要花多少分钟。

(2)排列问题(两端都种)

四、欣赏生活中类似于植树问题的事件

生活中的类似于植树问题的――――欣赏

植树问题教案3

教学过程:

教学内容:

教学目标:

1、通过猜测、试验、验证等数学探究活动,使学生初步体会两端都栽的植树问题的规律。

2、引导学生构建数学模型,解决实际生活中的有关问题。

3、培养学生通过“化繁为简”从简单问题中探索规律,找出解决问题的有效方法的能力,初步培养学生的模型思想和化归思想。

教学重点:发现并理解两端都栽的植树问题中间隔数与棵树的规律。

教学难点:运用“植树问题”的解题思想解决生活中的实际问题。

教学准备:课件、白纸

教学过程:

一、情境出示,设疑激趣

教师:哪位同学知道我们国家设立的植树节是在哪一天?(3月12日)在这一天的植树活动中,遇到了这样一个问题。(课件出示问题)

例1:同学们在全长100 m的小路一边植树,每隔5 m栽一棵(两端要栽)。一共要栽多少棵树?

教师:你能利用所学的知识解决问题吗?(板书)你认为哪一个结果是正确的?

设计意图

直接出示例题的情境,通过学生的尝试解答,既是对教学起点的了解,又利用两种不同的结果设置疑问,激发了学生探求新知的热情。

二、经历过程,感受方法

教师:可以用怎样的方法进行检验呢?实践是检验真理的唯一标准,虽然我们不能去户外植树,但是我们可以在草稿本上画一画。遇到了什么困难?

预设:100 m太长了,不太好画。(追问:那我们可以怎么办?)

学生:可以先用简单的数试一试。(课件出示)

设计意图

使学生经历分析思考的整个过程,感受“猜测──验证”的学习方法。在实际操作中发现问题有助于激发学生的思考,从而深刻地体会“从简单事例中发现规律,并利用此规律解决较复杂问题”的数学思想。

三、探索实践,建立模型

教师:先看看20 m的距离,在两端都栽的情况下可以栽几棵树。实物投影或课件出示:教师:说说你是怎么想的?预设:20÷5=4,20 m被平均分成4段,因为两端要栽,所以要栽5棵树。

教师:再画一画,25 m可以栽几棵树?(学生操作)谁来说说你的想法?

预设:25÷5=5,就是把25 m平均分成了5段,因为两端都要栽,所以要栽6棵树。还可以这样画:这里的蓝色线段表示什么?(间隔数)红色线段呢?(植树棵数)

(根据学生回答,教师在课件上输入数据)你发现了什么规律?

预设:棵数要比间隔数多1。(追问:可以用怎样的一个式子表示?)棵数=间隔数+1。教师:谁能说说为什么要“+1”?(因为两端都要栽,所以栽树的棵树比间隔数多1。)你能用发现的规律解决开头的问题吗?(指名回答,分析讲解)

教师:回顾这个问题的解答过程,说说你的想法。

归纳小结:在解决较复杂或数据较大的问题时,可以先从简单数据出发得出规律,然后将规律运用于复杂问题进行解决。

设计意图

“画示意图──抽象出线段图──不画图”的教学过程,体现了从具体到抽象、从特殊到一般的设计理念,也正是在这一进程中,通过积极有效的'教学活动,使学生建立起“一条线段两端都栽”这类植树问题的数学模型。

四、利用新知,解决问题

教师:根据刚才学到的知识,还可以解决许多生活中的问题。(课件出示问题)

1、在一条全长2 km的街道两旁安装路灯(两端也要安装),每隔50 m安一盏。一共要安装多少盏路灯?

教师:读完这个题目,你觉得有哪些地方需要特别引起注意?

预设1:单位不统一,要先进行转化再计算。

预设2:两旁。(追问:表示什么?)就是两边。你能通过画图的方法表示出“两旁”吗?在计算时该怎样体现?(先算出一边的路灯的数量,再乘以2。)

学生练习,指名回答。

2 km=20xx m(20xx÷50+1)×2=82(盏)

答:一共要安装82盏路灯。

教师:20xx÷50算的是什么?(间隔数)“+1”说明了什么?(两端都要安装)

2、马路一边栽了25棵梧桐树。如果每两棵梧桐树中间栽一棵银杏树,一共要栽多少棵?教师:仔细读题,认真思考,说说你对这个题目的理解。

引导得出:要求一共栽多少棵银杏树,实际就是求梧桐树的间隔数。由“棵数=间隔数+1”可得“间隔数=棵数—1”。

25—1=24(棵)

答:一共要栽24棵银杏树。

教师:可以用怎样的方法验证结果是否正确?(可以先用比较简单的例子,通过画线段图的方法进行验证)和这题有关的简单的例子,我们只要张开一只手。五个手指相当于题目中的?(梧桐树)每两个手指之间栽一棵(银杏树),可以栽几棵?你还有其他的方法吗?

设计意图

练习中的实际问题,相比例题有一些变化,对于学生的理解能力提出了更高的要求。第1题用画图的方法直观地表示出“两旁”,解决了算式中为什么要“×2”的问题;第2题先让学生思考,说说自己的理解,验证的环节既是对方法的回顾,又体现了数学的趣味性。

五、逆向思考,拓展新知

园林工人沿一条笔直的公路一侧植树,每隔6 m种一棵,一共种了36棵。从第1棵到最后一棵的距离有多远?

教师:读题并思考,要求“从第1棵到最后一棵的距离”就是求什么?(路长)跟例题相比,有什么不同?

预设:例题是知道了路长求栽树的棵数,这题是知道了栽树的棵数,求路线长度。教师追问:该怎样解答呢?试一试,并说说你的思路。

(36—1)×6=210(m)

答:从第1棵到最后一棵的距离是210 m。

教师:“36—1”算的是什么?(间隔数)再根据“间隔数×间隔距离=路长”计算。

设计意图

通过变式练习,加深学生对例题中发现的规律的理解。该题是植树问题数学模型的逆向应用,有了前一题“间隔数=棵数—1”的知识为基础,学生应该能比较容易地解决这一问题。对于学习有困难的同学,也可引导他们用画线段图的方法解答。

六、回顾思考,全课总结

教师:通过这一节的学习,你有什么收获?跟大家交流一下。

根据学生回答,强调:

1、解决两端都要栽的植树问题的数学模型:棵数=间隔数+1。

2、当遇到较为复杂的数学问题时,可以先从简单的事例中发现规律,然后应用找到的规律来解决原来的问题。

板书设计

植树问题(两端要栽)总长÷间距=间隔数间隔数+1=棵数100÷25+1=21(棵)

植树问题教案4

教学内容:

人教版五年级上册数学第七单元数学广角植树问题

教学目标:

知识技能目标:

1、利用学生熟悉的生活情境,通过动手操作的实践活动,使他们发现间隔数与植树棵数之间的关系;

2、通过小组合作、交流,在理解间隔数与棵数之间规律的基础上解决简单的植树问题。

过程目标:

1、使学生经历感知、理解知识的过程,培养学生从实际问题中发现规律,并应用规律来解决问题的能力;

2、渗透数形结合的思想,培养学生借助图形解决问题的意识;

3、培养学生的合作意识,养成良好的交流习惯。

情感目标:

1、通过实践活动激发热爱数学的情感;

2、感受日常生活中处处有数学,体验学习成功的喜悦。

教学重点:

理解“植树问题(两端要种)”的特征,应用规律解决问题

教学难点:

理解“间距数+1=棵数,棵数-1=间距数

教学过程:

一、设计情景、引入课题

1、教学“间隔”的含义

师:每位同学都有一双灵巧的手,他不但会写字、画画、干活,在他里面还藏着有趣的数学知识,你想了解他吗?请举起你的右手。(五指伸直、并拢、张开)

(课件出示)师:张开的五指中有几个空隙?(4个)数学中我们把这个“空隙”叫“间隔”。(板书)我们发现5根手指中有4个间隔,那么4根手指呢?3根呢?

2、举例生活中的“间隔”

师:生活中的“间隔”到处可见,你能举几个例子吗?(两棵树之间、两个同学之间、钟声…)

3、理解间隔数,引入课题。

在一条路上植树,每两棵树之间相等的段数叫间隔数(课件演示),每个间隔的长叫间距,研究间隔数和棵数之间关系的`问题,我们统称为植树问题,这节课我们来研究植树问题。(板书课题)

二、探索新知,探究规律

1、出示招聘启事

在操场边,有一条20米长的小路。学校计划在小路一边种树,要求每隔5米栽一棵。特聘请校园设计师数名,要求设计植树方案一份,择优录取。

2、出示例题,理解题意:

师:(课件出示例题。)

师:谁能读一读?这道题告诉我们什么数学信息?求什么问题?你认为这道题中什么词语最关键?

(课件解释关键词语,加深学生理解)

师:你认为要求一共植树多少棵,关键是知道什么?(间隔数)那么间隔数和棵数之间是什么关系?下面我们就来研究。

3、出示合作要求。

(1)教师讲解小组合作要求。

(2)学生4人小组开始合作学习,利用学具设计出植树方案。(可

以用不同的形式表达)

(3)教师巡视,指导学生小组合作。

(4)小组作品展示,及小组评价。教师及时点评学生的设计方案,并及时鼓励学生。

(5)引导学生总结出在实际生活中的植树情况可以分为三种:第一种两端都栽,第二种:只栽一端,第三种:两端都不栽。

4、以小组为单位探究棵数与间隔数间的关系:

(1)数一数:数出棵数和间隔数。

(2)比一比:比较出棵数和间隔数之间的规律。

两端都要栽时,植树的棵数比间隔数多1(棵数=间隔数+1)。

只栽一端时,植树的棵数与间隔数相同(棵数=间隔数)。

两端都不栽时,植树的棵数比间隔数少1(棵数=间隔数-1)。

三、课堂小结、反馈练习

1、公共汽车行驶路线全长12千米,相邻两站的距离是1千米。一共有几个车站?

2、广场上的大钟5时敲响5下,8秒敲完。 12时敲12下,需要多长时间敲完?

20 684147
");