高中物理教案实用4篇

网友 分享 时间:

【导言】此例“高中物理教案实用4篇”的教案资料由阿拉题库网友为您分享整理,以供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载支持吧!

高中物理的优秀教案1

整体设计

高中学习的速度概念较之初中所学的速度有了很大的提升,对学生来说是比较困难的,所以教学设计先通过说明如何用坐标和坐标的变化量来表示质点的位置和位移,为速度概念的叙述作好准备。速度的矢量性问题,是本节的重点,特别是对瞬时速度的理解,体现了一种极限的思想,对此要求引导学生逐步理解,不要急于求成。速度的定义是高中物理中第一次向学生 介绍比值定义物理量的方法,要求教师正确地加以引导,力求学生能理解。教学过程中,要多举实例,通过具体的例子从大小和方向两方面来强化对速度概念的认识,在实际情景中达到建立速度概念的目的。教学设计最后说明速度的应用,特别以“STS”形式从一个侧面说明速度与社会发展的关系。

教学重点

速度概念的建立;速度的比值定义法的理解。

教学难点

速度矢量性的理解;瞬时速度的推导。

时间安排

2课时

三维目标

知识与技能

1、理解速度的概念。知道速度是表示物体运动快慢的物理量,知道它的含义、公式、符号和单位,知道它是矢量。

2、理解平均速度,知道瞬时速度的概念。

3、知道速度和速率以及它们的区别。

过程与方法

1、记住匀速直线运动中速度的计算公式,能用公式解决有关问题。

2、理解平均速度的物理含义,会求某段时间内的平均速度。

情感态度 与价值观

1、通过介绍或学习各种工具的速度,去感知科学的价值和应用。

2、培养对科学的兴趣,坚定学习思考探索的信念。

教学过程

导入新课

问题导入

为了推动我国田径事业的发展,四川省曾举办过一次100 m飞人挑战赛。有8名世界短跑名将参加角逐,其中包括我国的李雪梅和美国的琼斯,最终琼斯夺得冠军。我们知道百米赛跑分为起跑、途中跑和冲刺三个阶段,李雪梅的途中跑阶段比琼斯的起跑阶段跑得快,但我们都说琼斯比李雪梅跑得快,这是为什么?

通过本节课学习,我们就可以给出合理的评判标准。

情景导入

课件展示各种物体的运动,激发学生的学习兴趣。

影片展示:大自然中,物体的运动有快有慢。天空中,日出日落;草原上,猎豹急驰;葡萄架上,蜗牛爬行。

飞奔的猎豹、夜空的流星在运动;房屋、桥梁、树木,随着地球的自转、公转也在运动。天上的恒星,看起来好像不动,其实它们也在飞快地运动,速度至少在几十千米每秒以上,只是由于距离太远,在几十年、几百年的时间内肉眼看不出它们位置的变化。

当高台跳雪运动员出现在赛道的顶端时,全场观众的目光都集中在他身上。运动员由高处急速滑下,在即将到达赛道底部时,他的速度已达到100 km/h。这时,他双膝弯曲,使劲一蹬,顺势滑向空中。然后,为了减小空气阻力的影响,他上身前倾,双臂后摆,整个身体就像一架飞机,向前滑翔。刺骨的寒风抽打着他的脸庞,两边的雪松飞快地向后掠过。最终,滑雪板稳稳地落在地面。

在以上的各种运动现象中,都有关于运动的描述,运动的快慢如何,要用一个新的物理量来描述,那就是速度。

推进新课

一、坐标与坐标的变化量

复习旧知:在上一节的学习中,我们学习了位移这一较为重 要的矢量。大家回忆一下,位移的定义是什么?

学生积极思索并回答出位移的定义:从初位置指向末位置的有向线段。(复习此知识点,旨在为速度的引入奠定知识基础,让学生知道位移大小的关键在于初末位置。由位置到位置坐标再到坐标的变化量,使学生的认知呈阶梯状上升)

教师引导:既然位移是描述物体位置变化的物理量,所以物体的位移可以通过位置坐标的变化量来表示。

问题展示:在训练场上,一辆实习车沿规定好的场地行驶,教练员想在车旁记录汽车在各个时刻的位置情况,他该如何做?假设在每一秒汽车都在做单向直线运动。

问题启发:对于物体位置的描述,我们往往需要建立坐标系。该教练员如何建立坐标系,才能方便地确定该车的位置?

点评:通过设问,发挥教 师的引导作用,“变教为诱”“变教为导”,实现学生的“变学为思”“变学为悟”,达到“以诱达思”的目标。

教师指导学生分组合作讨论并总结。

小结:直线运动是最简单的运动,其表示方式也最简单。如以出发点为起点,车行驶20 m,我们就很容易地确定车的位置。所以,应该建立直线坐标系来描述汽车的位置。

课堂训练

教练员以汽车的出发点为坐标原点,以汽车开始行驶的方向为正方向,建立直线坐标系,其对应时刻的位置如下表所示:

时刻(s) 0 1 2 3 4

位置坐标(m) 0 10 —8 —2 —14

根据教练员记录的数据你能找出:

(1)几秒内位移最大?

(2)第几秒内的位移最大?

解析:汽车在0时刻的坐标x0=0

汽车在1 s时刻的坐标x1=10

汽车在第1 s内的位置变 化为Δx=x1—x0=(10—0) m=10 m

所以,汽车在第1 s内的位移为10 m。

同理可求,汽车在1 s内、2 s内、3 s内、4 s内的位移分别为10 m、—8 m、—2 m、—14 m。汽车在第1 s内、第2 s内、第3 s内、第4 s内的位移分别为10 m,—18 m,6 m,—12 m。

所以,第2 s内的位移最大,4 s内的位移最大。

答案:(1)4 s内 (2)第2 s内

二、速度

以下有四个运动物体,请同学们来比较一下它们运动的快慢程度。

运动物体[来源:学*科*网Z*X*X*K] 初始位置(m) 经过时间(s) 末位置(m)

A、自行车沿平直道路行驶 0 20 100

B、公共汽车沿平直道路行驶 0 10 100

C、火车沿平直轨道行驶 500 30 1 250

D、飞机在天空直线飞行 500 10 2 500

如何比较A、B、C、D四个物体的运动快慢呢?

比较1:对A和B,它们经过的位移相同(都是100 m),A用的时间长(20 s),B用的时间短(10 s)。在位移相等的情况下,时间短的运动得快,即汽车比自行车快。

比较2:对B和D,它们所用的时间相等(10 s),B行驶了100 m,D飞行了200 m,B行驶的距离比D短,在时间相等的情况下,位移大的运动得快,即飞机比汽车快。

提出问题

以上两种比较都是可行的。位移相等比较时间,时间相等比较位移。如何比较B和C的快慢程度呢?它们的位移不相等,时间也不相等。

教师指导学生分小组讨论,5分钟后提出比较意见。

方法1:B和C的位移和时间都不相等,但可以计算它们每发生1 m的位移所用的时间,即用各自的时间t去除以位移Δx,数值大的运动得慢。

方法2:B和C的位移和时间都不相等,但可以计算它们平均每秒钟位移的大小量,单位时间内位移大的运动得快。

师生讨论:两种方法都可以用来比较物体运动的快慢,但方法2更能够符合人们的思维习惯。

点评:问题由教师提出,明确猜想和探究的方向,教师引导学生利用已有的知识和现象,鼓励大胆猜想讨论。通过这个开放性的问题,创设一种情境,把学生带进一个主动探究学习的空间。

引子:大自然中,物体的运动有快有慢。天空,日出日落;草原,骏马奔驰;树丛,蜗牛爬行。仔细观察物体的运动,我们发现,在许多情况下,物体运动快慢各不相等且发生变化,在长期对运动的思索、探索过程中,为了比较准确地描述运动,人们逐步建立起速度的概念。

提出问题

如何对速度进行定义?

学生阅读课本并回答。

1、速度的定义:位移与发生这个位移所用时间的比值。

2、速度的定义式:v=

3、速度的单位:m/s 常用单位:km/h,cm/s。

提示:速度是矢量,其大小在数值上等于单位时间内物体位移的大小,其方向就是物体运动的方向。

再次呈现:四个物体A、B、C、D快慢比较的表格,让学生分别计算它们的速度。

A、5 m/s B。10 m/s

C、25 m/s D。200 m/s

对比以上A、B、C、D的速度就很容易比较它们的快慢程度了。

课堂训练

汽车以36 km/h的速度从甲地匀速运动到乙地用了2 h,如果汽车从乙地返回甲地仍做匀速直线运动用了2。5 h,那么汽车返回时的速度为(设甲、乙两地在同一直线上)( )

A。—8 m/s B。8 m/s

C。—28。8 km/h D。28。8 km/h

解析:速度和力、位移一样都是矢量,即速度有正方向、负方向,分别用“+”“—”号表示。当为正方向时,一般不带“+”号。速度的正方向可以根据具体问题自己规定。有时也隐含在题目之中。例如该题中汽车从甲地到乙地的速度为36 km/h,为正值,隐含着从甲地到乙的方向为正,所以返回速度为负值,故淘汰B、D。

依据甲、乙两地距离为36×2 km=72 km,所以返回速度为 =—28。8 km/h=—28。8× m/s=—8 m/s。

答案:A

方法提炼:速度是一个矢量,有大小也有方向。在我们选择了正方向以后,当速度为正值时,说明质点沿正方向运动,当速度为负值 时,说明质点沿负方向运动,在物理学上,对矢量而言“负号”也有意义,说明它的方向与所选正方向相反。

三、平均速度和瞬时速度

坐在汽车驾驶员的旁边,观察汽车上的速度计,在汽车行驶的过程中,速度计指示的数值是时常变化的,如启动时,速度计的数值增大,刹车时速度计的数值减小。可见物体运动快慢程度是在变化的。这时我们说的汽车的“速度”是指什么?

提出问题

其实,我们日常所看到的直线运动,有许多都是变速运动。由于这种运动的快慢是时刻变化的,没有恒定的速度,我们怎么来描述它的快慢呢?

课件展示:北京至香港的京九铁路,就像一条长长的直线,把祖国首都与香港连接起来。京九线全长2 400 km,特快列车从北京到香港只需30 h,那么列车在整个过程的运动快慢如何表示?

学生解答:已知s=2 400 km,t=30 h,所以v=80 km/h

问题追踪:计算出的结果是否表示列车单位时间的位移都是80 km呢?教师在学生回答的基础上引导学生认识此速度的平均效果。既然列车是做变速运动,那么怎么看列车的速度是80 km/h?

学生总结:如果将列车的变速直线运动看作匀速直线运动来处理 的话,列车平均每小时的位移是80 km。

教师设疑:为了描述变速直线运动的快慢程度,我们可以用一种平均的思考方式,即引入平均速度的概念。平均速度应如何定义?

师生总结:1、平均速度:运动物体的位移和时间的比值叫做这段时间的平均速度。

2、定义式: =

知识拓展:课件展示某些物体运动的平均速度,加深对平均速度的概念理解。

某些物体运动的平均速度/(ms—1)

真空中的光速c 3、0×108 自行车行驶 约5

太阳绕银河系中心运动 20×105 人步行 约1。3

地球绕太阳运动 3。0×104 蜗牛爬行 约3×10—3

子弹发射 9×102 大陆板块漂移 约10×10—9

民航客机飞机 2。5×102

例1斜面滚下时在不同时刻的位置,如图1—3—1所示。可以从图中观察分析小球通过OA、OB、OC的过程中的运动快慢。

计算各段的平均速度。

图1—3—1

学生认真计算并公布结果: 段: =0。7 m/s, 段: =0。8 m/s。 段: =0。9 m/s。

总结归纳:计算结果表明,不同阶段的平均速度一般是不相等的。计算一个具体的平均速度,必须指明是哪一段时间(或位移)内的平均速度。

教师点评:由于小球运动快慢是在不断变化的,平均速度不能具体地告诉我们小球在每一时刻的运动快慢。可见,平均速度只是粗略地描述物体在一段运动过程中的总体快慢程度。

教师设疑:那么,怎样来描述物体在各个时刻的运动快慢呢?

学生通过课本预习知道,要精确地描述某一时刻的运动快慢必须引入瞬时速度这一物理量。

根据平均速度的定义可以知道: = ,对应的是一段位移和一段时间,如何建立瞬时速度的概念呢?瞬时速度对应的应该是某一位置和某一时刻。

师生探究:我们 已经知道平均速度对应的是一段时间,为求瞬时速度我们可以采取无限取微、逐渐逼近的方法。

方法介绍:以质点经过某点起在后面取一小段位移,求出质点在该段位移上的平均速度,从该点起取到的位移越小,质点在该段时间内的速度变化就越小,即质点在该段时间内的运动越趋于匀速直线运动。当位移足够小(或时间足够短)时,质点在这段时间内的运动可以认为是匀速的,求得的平均速度就等于质点通过该点时的瞬时速度。

教师演示:如图1—3—2所示,让滑块沿倾斜的气垫导轨做加速运动,利用挡光片的宽度Δx除以挡光的时间Δt,即可求得挡光片通过光电门的平均速度。

图1—3—2

将滑块放上不同宽度的遮光片,即Δx分别为1 cm、3 cm、5 cm、10 cm,若没有成品挡光片,可用硬纸片自制成需要的宽度。

测出每 个遮光片通过光电门所用的一段时间间隔Δt。

遮光片越窄、Δt越小时, 描述通过该位置的运动快慢越精确,当Δx小到一定程度,可认为 是瞬时速度。

教师总结:瞬时速度:运动物体在某一时刻(或某一位置)的速度。准确地讲,瞬时速度是物体在某时刻前后无穷短时间 内的平均速度,是矢量,其大小反映了物体此时刻的运动快慢,它的方向就是物体此时刻的运动方向,即物体运动轨迹在该点的切线方向。

四、速度和速率

速率:瞬时速度的大小叫做速率。平均速率:物体运动的路程与所用时间的比值。

例2如图1—3—3,一质点沿直线AB运动,先以速度v从A匀速运动到B, 接着以速度2v沿原路返回到A,已知A B间距为x,求整个过程的平均速度、平均速率。

图1—3—3

解析:整个过程位移为0,所以整个过程的平均速度为0。

整个过程通过的总路程为2x,所用的总时间为t= 。

所以平均速率为 = = x。

答案:0 x

要点总结:1、速度是矢量,既有大小,又有方向;速率是标量,只有大小,没有方向。

2、无论速度方向如何,瞬时速度的大小总等于该时刻的速率。

3、平均速度是矢量,其方向与对应的位移方向相同;平均速率是标量,没有方向。

4、平均速度等于位移与所用时间的比值,平均速率等于路程与所用时间的比值,平均速度的大小不等于平均速率。

5、只有单向直线运动时,平均速度的大小等于平均速率,其他情况下,平均速度均小于速率,二者的关系类似于位移和路程。

课堂小结

定义 物理意义 注意问题

速度 位移与发生这个位移所用时间的比值 描述物体的快慢程度和运动方向 v和s及t是对应关系。是矢量,方向就是物体运动的方向

平均速度 物体在时间间隔Δt内运动的平均快慢 描述在一段时间内物体运动的快慢和方向 只能粗略地描述物体的运动快慢。大小和所研究的时间间隔Δt有关;是矢量,方向和运动方向相同

瞬时速度 物体在某时刻或某位置的速度 描述物体在某时刻的运动快慢和方向 精确地描述物体的运动快慢。矢量,方向沿物体运动轨迹的切线方向

速率 瞬时速度的大小叫做速率 描述物体的运动快慢 是标量,只考虑其大小不考虑其方向

布置作业

1、教材第18页“问题与练习”,第1、2题。

2、观察生活中各种物体的运动快慢,选取一定的对象,测量它们的速度,并说明是平均速度还是瞬时速度,并把测量的数据与同学交流讨论。

板书设计

3 、运动快慢的描述 速度

活动与探究

课题:用光电门测瞬时速度

请你找老师配合,找齐所用仪器,根据说明书,自己亲自体验用光电门测瞬时速度,并写一实验报告。

步骤 学生活动 教师指导 目的

1 根据查阅的资料,确定实验方案 介绍相关书籍资料 1。让学生了解光电门测瞬时速度的原理

2。培养学生的动手能力和独立思考能力

2 进行实验和收集数据 解答学生提出的具体问题

3 相互交流活动的感受 对优秀实验成果进行点评

参考资料:

瞬间无长短,位置无大小,除了用速度计外,还可以用光电门测瞬时速度。实验装置如图1—3—4所示,使一辆小车从一端垫高的木板上滑下,木板旁有光电门,其中A管发出光线,B管接收光线。当固定在车上的遮光板通过光电门时,光线被阻挡,记录仪上可以直接读出光线被阻挡的时间。这段时间就是遮光板通过光电门的时间。根据遮光板的宽度Δx和测出的时间Δt,就可以算出遮光板通过光电门的平均速度 = 。由于遮光板的宽度Δx很小, 因此可以认为,这个平均速度就是小车通过光电门的瞬时速度。

图1—3—4

习题详解

1、解答:(1)1光年=365×24×3 600×3。0×108 m=9。5×1015 m。

( 2)需要时间为 s=4。2年。

2、解答:(1)前1 s平均速度v1=9 m/s

前2 s平均速度v2=8 m/s

前3 s平均速度v3=7 m/s

前4 s平均速度v4=6 m/s

全程的平均速度v5=5 m/s

v1最接近汽车关闭油门时的瞬时速度,v1小于关闭油门时的瞬时速度。

(2)1 m/s,0

说明:本题要求学生理解平均速度与所选取的一段时间有关,还要求学生联系实际区别平均速度和(瞬时)速度。

3、解答:(1)24。9 m/s (2)36。6 m/s (3)0

说明:本题说的是平均速度是路程与时间的比,这不是教材说的平均速度,实际是平均速率。应该让学生明确教材说的平均速度是矢量,是位移与时间的比,平均速率是标量,日常用语中把平均速率说成平均速度。

设计点评

本节内容是在坐标和坐标的变化基础上,建立速度的概念。速度的建立采用了比值定义法,在教学中稍加说明,在以后的学习中还会有更加详细的介绍。对速度的引用,本设计采用了“单位时间的位移”与“单位位移的时间”进行对比,体会速度引入的方便性。以京九铁路为情景,既激发了学生的学习热情又培养了爱国之情。在瞬时速度的理解上,本设计利用了光电门的装置进行说明,起到了良好的效果。

他山之石,可以攻玉。以上4篇高中物理教案就是山草香小编为您分享的高中物理优秀教案的范文模板,感谢您的查阅。

高中物理教案2

一、指导学生学习的方法

1。将解题思路简单化,程序化。

怎样做到让学生主动的去思考?关键在于老师要通过适当的方法,让学生学会学习策略,在物理教学的过程中,展示给学生问题的关键点在哪?突破点在哪?以及解决物问题的思路,把思考的过程程序化,简单化。经过这样的过程,学生不止明白了如何解决这一个问题,而且还明白了怎样类似的问题。

2。运用策略

为了让学生更好的领会学习策略,需要让学生有练习的机会。通过练习,学生就可以体会到学习策略的运用技巧,并能够加深印象,熟练掌握。在运用策略的过程中,应该为学生选择,设置能够尝试不同学习策略的问题情境,应从学习材料的多样性,不同角度去进行搜集,让学生能够灵活的运用于物理学习中。

3。引导学生形成新的策略

创造性是学习策略教学的最大的特点。学生在运用学习策略的过程中,逐渐发现策略的重要性和有效性之后,会明确的意识到策略在其他不同的领域所呈现的作用。从而形成自己的具有个人特色的新策略,成为学习的主人。最好的策略就是适合个人特点,有效的策略,这就是学习策略的目的。

二、有效教学反思性评价

1。自我反思评价的意义

自我反思性评价是提高专业技能一个重要方式。某位注明的心理学家曾经说过:经验加上反思等于成长。要想获得持续的提高,成长,进步,只有通过不断的反思和总结,曾经有人做过专项的研究:一个可持续发展的教师,他在教学过程中要做到自我的观察,自我评价,自我监控和自我反思,能够对自己的教学行为进行自我调节。通过不断的总结,反思,修正,主动的审视自己的教学活动,通过这个过程,就能够使得自身处于一个不断完善,进步的良性循环中。

2。反思评价的内容

1)在物理教学的实施阶段,教师对于自身反思性评价包括:教学理念的反思性评价,知识与技能,过程与方法,态度与价值观的有效结合是新课程课堂教学的要求。在传授学生知识技能的过程中,重视学生的体验,重视过程与方法的结合,这要求教师要转变陈旧的理念,从一个知识传播者转变为引导者,合作者和组织者。为了能够真正理解新课程的精神,并加以利用,教师需要经历从学习,实践再到自我反思评价再到学习实践的循环过程,在这个过程中,完成对教学理念的升华。

2)教学内容的`反思评价教学内容的反思性评价,包含教学内容的有序性,科学性,以及与学生实际情况的匹配度。是否是以教学目标为统筹的讲解物理概念。教学的重难点,选题的代表性是否利于学生的理解运用,是否能够体现解决方法的关键点,作业的布置是否准确,能够设计有利于培养学生思考能力,观察能力的实验方案等等。

3)教学对象的反思评价学生是教学的主体,不同的学生有不同的心理和特征,随着年龄的增长,不同学生个体的理解能力和思考能力的差异会更明显。所以,对学生的理解就显得尤其重要,作为物理教师,应了解学生的共性和差异,考虑教学的进度是否符合学生的接受能力,是否把精力偏向优等生而遗忘所谓的差生。是否能根据课堂的实际教学情况作出及时调整。反思学生的好奇心,求知欲,学习习惯等,只有这样,物理教师才能做到因材施教。本文基于现代教育学和心理学理论,结合新课程要求的特点,对新课程背景下,如何提高高中物理教学有效性进行研究,利于提高高中物理教学水平,探究课堂教学策略的有效性。

高中物理教案3

教学目标

知识目标

1、知道摩擦力产生的条件;

2、能在简单的问题中,根据物体的运动状态,判断静摩擦力的有无、大小和方向;知道存在着最大静摩擦力;

3、掌握动摩擦因数,会在具体问题中计算滑动摩擦力,掌握判定摩擦力方向的方法;

4、知道影响动摩擦因数的因素;

能力目标

1、通过观察演示实验,概括出摩擦力产生的条件以及摩擦力的特点,培养学生的观察、概括能力。通过静摩擦力与滑动摩擦力的区别对比,培养学生的分析综合能力。

情感目标

渗透物理方法的教育。在分析物体所受摩擦力时,突出主要矛盾,忽略次要因素及无关因素,总结出摩擦力产生的条件和规律。

教学建议

一、基本知识技能:

1、两个互相接触且有相对滑动或的物体,在它们的接触面上会产生阻碍相对运动的摩擦力,称为滑动摩擦力;

2、两个物体相互接触,当有相对滑动的趋势,但又保持相对静止状态时,在它们接触面上出现的阻碍相对滑动的作用力

3、两个物体间的滑动摩擦力的大小跟这两个物体接触面间的压力大小成正比。

4、动摩擦因数的大小跟相互接触的两个物体的材料有关。

5、摩擦力的方向与接触面相切,并且跟物体相对运动或相对运动趋势相反。

6、静摩擦力存在最大值——最大静摩擦力。

二、重点难点分析:

1、本节课的内容分滑动摩擦力和静√山草香★√摩擦力两部分。重点是摩擦力产生的条件、特性和规律,通过演示实验得出关系。

2、难点是在理解滑动摩擦力计算公式时,尤其是理解水平面上运动物体受到的摩擦力时,学生往往直接将重力大小认为是压力大小,而没有分析具体情况。

教法建议

一、讲解摩擦力有关概念的教法建议

介绍滑动摩擦力和静摩擦力时,从基本的事实出发,利用二力平衡的知识使学生接受摩擦力的存在。由于摩擦力的内容是本节的难点,所以在讲解时不要求“一步到位”,关于摩擦力的概念可以通过实验、学生讨论来理解。

1、可以让学生找出生活和生产中利用摩擦力的例子;

2、让学生思考讨论,如:

(1)、摩擦力一定都是阻力;

(2)、静止的物体一定受到静摩擦力;

(3)、运动的物体不可能受到静摩擦力;

主要强调:摩擦力是接触力,摩擦力是阻碍物体间的相对运动或相对运动趋势的,但不一定阻碍物体的运动,即在运动中也可以充当动力,如传送带的例子。

二、有关讲解摩擦力的大小与什么因素有关的教法建议

1、滑动摩擦力的大小,跟相互接触物体材料及其表面的光滑程度有关;跟物体间的正压力有关;但和接触面积大小无关。注意正压力的解释。

2、滑动摩擦力的大小可以用公式:

高中物理优秀教案4

教学目标:

1.理解电势差的概念及期 定义式 ,会根据电荷q在电场中移动时电场力所做的功WAB计算UAB,会根据电势差UAB计算电荷Q在电场中移动时电场力所做的功WAB=qUAB

2.理解电势的概念,知道电势与电势差的关系UAB= A - B ,知道电势的值与零电势的选择有关。

3.知道在电场中沿着电场线的方向电势越来越低。

4.知道什么是电势能,知道电场力做功与电势能改变的关系。

能力目标:培养学生的分析能力、综合能力。

德育目标:使学生能从类似的事物中找出共性。

教学重点:

电势、电势差的概念

教学难点:

电势、电势差的概念的引入

教学方法:

类比法、归纳法、问题解决法

教学过程:

一、复习引入

一个带正电的小球处于匀强电场中,会受到电场对它的力的作用,受力的方向如何呢?受力的大小呢?

(F=Eq)。电荷在电场中受力的作用,我们引入了描述电场力的性质的物理量,场强E。它是与有无电荷q无关的物理量,是由电场本身决定的物理量。

如果将带电小球从A点移动到B时,电场力对电荷做功吗?从本节课开始,我们从功和能的角度来研究电场。学习与电场能量有关的几个物理量(展示课题)

二、新课教学

电场力做功的问题我们不熟悉,但重力做功的问题。下面我们将从重力做功的问题出发来类比研究电场力做功。

(一)电场力做功与路径无关

(出示重力做功与路径无关的图)

物体在重力作用下,从A沿不同的路径运动到B位置,重力做功匀为mgh,与路径无关。

与此类似,电荷在匀强电场中受力的作用,把电荷从A移到电场中的B位置时,也可以沿不同的路径运动。类似重力做功,电场力做功也与运动路径无关。这个结论是从匀强电场得到的,对于非匀强电场也适用。所以我们在后面的课程中,研究电荷在电场中移动时,电场力做功的问题,可以认为电荷沿直线运动到另一位置。这是电场力做功的一个特点。

(二)电势差

1.引入(出示重力做功与重力成正比的图)

如果我们让不同的物体先后通过空间的A、B两个固定的位置。

如:重力为G物体,做功为W1=GhAB

重力为G2=2G……W2=…2GhAB……

则:WG G成正比,其比值

也就是说重力场中确定的两点间的高度差是一定的。与重物G的大小无关与有无重物下落是无关的。

但让一重物在A、B间落下时,则出W和G,可以用比值量度出hAB。

类似地(出示电场力做功Q与成正比的图)

我们在电场中A、B两点间移动不同电量的带电体时:

如果q1=+ q,设电场力做功为W1=W

则q2==+2q,则A到B时,位移相等,在移动过程的任一位置处,q2==+2q,则q2所受电场为q1的2倍,即移动过程中电场力做的功W2=2W……

则:W电 q成正比, 为一定值。

这个比值是由电场的A、B两点的位置决定的量。

与在这两个位置间移动电荷的电量大小无关,与是正电荷、负电荷无关,与在无电荷q无关。只是让这个电荷在这两点间移动后,用功和电量的比值把它的大小量度出来。在物理学中,把这个比值叫做电场中A、B两点间电势差。

2.电势差的概念:

板书:一、电势差

1.定义:电荷q在电场中由一点A移动到另一点B时,电场力所做的功WAB与电荷量q的比值WAB/q,叫做A、B两点间的电势差。用UAB表示。

2.定义式:UAB=

同AB电荷在电场中不同位置间移动时,电场力做的功多,两点间的电势差大。但两点间电电势差由电场本身决定,与Wq无关的。板书五:(1)点

(1)物理意义:电势差是电场本身的性质,与Wq无关。

(2)单位:1V=1J/C

电量为1C的正荷,在电场中两点间移动时,电场力做的功如果为1J,则两点的电势差为1伏特。

3.小练习:下面请看例1:

动画演示过程,标出力和V的方向,指出A到B的过程,电场力做正功,则

UAB= =……=2V。

如果从B到A移动时,电场力做负功,其WBA=-WAB

则UBA= =-2V

由例题得到以下启示:

(1):UAB=-UBA,(2)由于q有正负,WAB有正、负功,则其比值有可能为正、负值。一般我们只关心其大小,且电势差的大小记为U电压。初中物理中某导体两端的电压,指两点间的电势差。

得到板书:

(3)UAB=-UBA (4)|UAB|=|UBA|=U

根据电势差的定义式,得变形公式WAB=qUAB

板书:3:WAB=qUAB

(三)电势

我们用重力场中的高度差类比得到了电场中两点的电势差。重力场中还有高度一词,表示什么意思呢?劈如说选择(室内)地面作为参考平面,吊灯与地面之间的高度差为hA0=3m,我们也说成吊灯的高度为3m。类似地,如果把电场中的某一点作为参考点,另一点A与参考点之间的电势差就叫作A点的电势。

电势的概念

板书:二、电势

定义:如果在电场中选择某一点为参考点(零电势点),则A点与参考点O之间的电势差叫做A点的电势,记为 A,为特殊的电势差。

A=UAO=

所以其单位也是伏特。

下面做一个练习,求电场中各点的电势

已知:q=+1C

WAC=15J

WBC=5J UBC

WDC=-3J UAC UCD

(边展示力分析为何正功、负功)

则以C点为零电势点,则:

类似地:UBC=5V,UDC=-3V(做成填空)

则 A=15V B=5V D=-3V

①从计算中得到:电势有正、负值,是表示该点电势比零电势点的电势低,不代表方向,是标量。

②此时:AB之间的'电势差呢?

推导:

经观察,与A、B点的电势有何关系?

(UAB= A- B)

原来,AB点的电势差就是A、B点的电势之差,其值为负,表示A点电势比B点电势低是标量。不代表方向。

③如果以B点为零电势点,则A、C点的电势呢?

则 A=UAB=10V B=0V

看来,取不同的零电势点,各点的电势不同。

④此时AC点的电势差呢?

UAC= A- c=10V-(-5V)=15V

与原来以C点为零电势点的电势差相等。所以电势差是绝对的,与零电势点的选择无关,电势是相对的

出示板书内容:

UAB= A- B

说明:电势是相对的,电势差是绝对的

⑤再看例题中各点的电势,沿着电场线的方向,电势逐渐降低。

3.练习:例2:

①注意分析UAB=-10V为什么?

正电荷由A B点,F与位移的方向做什么功?

则WAB= qUAB=4×10-8J

则电势能增加了4×10-8J,其它形式的能转化为电势能。

②如果电荷为负电荷,在同一电场由一点A移动到同一点B呢?

由于电场没关,两点的位置没有变,则AB间的电热差不变。

所以WAB= qUAB=2×10-8J

电势能减少了,转化成了其它形式的能。

③此题还可由W=Uθ来计算,W的正负根据分析得出,正功为正,负功为负。

四、小结:

1.类比重力场的高度差引入电势差:

UAB= 与q无关

2.类比重力场的高度引入电势

20 928753
");