圆的面积教案精编4篇

网友 分享 时间:

【路引】由阿拉题库网美丽的网友为您整理分享的“圆的面积教案精编4篇”文档资料,以供您学习参考之用,希望这篇范文对您有所帮助,喜欢就复制下载支持吧!

《圆的面积》教学设计1

圆的面积教学内容:圆的面积第67-68页圆面积公式的推导。例1及做一做的第1题。练习十六的第1、2、5题。教学目标:⒈使学生理解圆面积的含义,理解圆面积计算公式的推导过程,掌握圆面积的计算公式。          ⒉培养学生动手操作、抽象概括的能力,运用所学知识解决简单实际问题。          ⒊渗透转化的数学思想。教学重点:圆面积的含义。圆面积的推导过程。教学难点:圆面积的推导过程。教学过程:一、复习。1、已知r,周长的一半怎样求?   2、用手中的三角板拼三角形,长方形、正方形、平行四边形等,并说出这些图形的面积计算公式。       s=ab       s=a2      s= ah       s= ah    s= (a+b)h二、新课。1、什么是圆的面积?(出示纸片圆让生摸一摸)    圆所占平面大小叫做圆的面积。2、推导圆的面积公式。(1)演示:将等分成16份的圆展开,问可拼成一个什么样的图形?若分的分数越多,这个图形越接近长方形。(1)找:找出拼出的图形与圆的周长和半径有什么关系?圆的半径 = 长方形的宽   圆的周长的一半 = 长方形的长    长方形面积 = 长 ×宽

所以:   圆的面积 = 圆的周长的一半×圆的半径

s = πr × r               s圆 = πr×r = πr2  3、你还能用其他方法推算出圆的面积公式吗?(1)将圆16等份,取其中一份,看作是一个近似的三角形,三角形的面积 是这个圆面积的 。这个三角形底是圆周长的 ,三角形的高是圆的半径。因为:三角形面积= ×底×高  162π圆面积= ×            = ×       ·r×r           =πr2(2)将圆16等分,取其中两份,可以拼成一个近似的平行四边形。平行四边形面积是圆面积的 ,平行四边形的底是 ,三角形的高即一个半径,因为:平行四边形面积=底×高162π         圆面积 = ×r÷                      =       ×r×8       &nb〈WWW.〉sp;             =πr2还可以取3份、4份等,同学们可以一一推算。三、运用知识解决实际问题。1、例1    一个圆的直径是20m,它的面积是多少平方米?已知:d=20厘米  求:s=?       r=d÷2      20÷2=10(m)s=лr2               ×102                           =×100              =314(平方厘米)2、根据下面所给的条件,求圆的面积。r=5cm       d =       3、解答下列各题。(1)一个圆形茶几桌面的直径是1m,它的面积是多少平方厘米?(2)公园草地上一个自动旋转喷灌装置的射程是10m。它能喷灌的面积是多少?四、作业。     课本p70第1、5题。

读书破万卷下笔如有神,以上就是差异网为大家带来的4篇《圆的面积教案》,希望对您有一些参考价值,更多范文样本、模板格式尽在差异网。

《圆的面积》教学设计2

一、教材内容分析

人教版六年级上册《圆的面积》这部分内容是平面几何的最后阶,(教材67——68页)它既是前面所学直观地认识平面图形及有关计算的延续和发展,又为今后逐步由实践几何转入论证几何作了渗透和准备。因此,在教学时,主要是让学生用转化的思想进行操作、观察和比较,推导圆的面积计算公式。并让他们初步学会用确切、简明的数学语言表述概念的本质特征,引导学生初步接触归纳推导出公式并理解并掌握公式的应用,为今后进一步学习打下基础。

二、学情分析

六年级的学生已掌握了长方形、平行四边形、三角形、梯形的面积公式的推导方法,具有一定的转化和类比推理能力,并具对圆和圆的周长知识已经有了初步的了解,有强烈的好奇心。因此,易于在转化和类比推理方面进行启发和引导,让学生利用已有的知识和经验,实现《圆的面积》公式的推导,但圆是由一条曲线围成的图形,学生很难跟以往由几条线段围成的图形之间建立必然的联系。因此,在利用转化和类比推理基础上,要结合操作演示,让学生在学习圆面积公式的推导过程中,激发学生的学习兴趣,掌握学习方法,增加感性的认识,从而真正掌握圆的面积公式的推导过程,并且能应用公式解决一些生活实际问题。

三、教学目标知识与技能

1,让学生利用已有的知识,引导学生通过观察、操作、分析和讨论,推导出圆的面积公式,并能运用公式解答一些简单的实际问题。

过程与方法

1,引导学生经过“感知——动脑——观察——合作探究”等系列活动。逐步培养学生的抽象思维能力。

2,通过实例引入,让学生体验数学来源于生活,又服务于生活;向学生展示生动、活泼的数学天地,唤起学生学习数学的兴趣,使全体学生积极参与探索。

情感态度与价值观

让学生在参与中体验成功的乐趣。使学生感受到生活中数学的魅力,让学生领会图形转化的神奇和魅力。

四、教学策略选择与设计

1、注重情境创设,有意识地激发学生学习知识的兴趣:数学来源于生活,通过实际情境,既创设了生动的生活情境,激发了学生参与的兴趣,又为后继学习和深入探究埋下了伏笔。而且在直观的动画情境中很好地展示了圆的面积概念。使学生体会到实际生活中计算圆的面积的必要性,同时也激发了学生求知的欲望和学习兴趣。

2、注重实践操作,有意识地培养学生获取知识的能力:学习是学生的内部活动,因此,在课堂教学中既要重视其学习结果,更要重视其学习过程,学生的创造潜能,存在于学习过程、探究过程之中,而不存在于数学结论中,只有实实在在的学习过程、思维过程、探究过程,才能有所创造,培养学生自己探索获取知识的能力。这节课的教学,紧紧抓住“圆面积公式的推导”这一教学重点,放手让学生自己动手操作,归纳整理。通过学生的剪拼,转化,利用等积变形把圆面积转化成了其他的平面图形,进而归纳、概括出圆面积的计算方法。这种多角度的思考,既打通了新、旧知识的联系,又激发了学生的求知欲,使学生不仅知其然,更知其所以然。

3、注重学法指导,有意识地引导学生应用转化的方法:本节课中,在求圆面积公式时,不是教师灌输式地教会学生S=πr2,而是由学生在原有知识经验的基础上,通过“观察——猜测——操作——分析——探究”, 并在老师的引导下,利用“转化”的思想,将圆变成已学的图形:长方形、三角形、梯形。通过学生自主动手剪拼,然后研究两者之间的联系,实现圆的面积公式的推导,从而推导出圆面积公式。整节课,始终围绕这个主题,从创设生活情境,到提出研究的方向与方法,最后引导学生推导出公式,教师只作为组织者、指导者和参与者,适当进行点拨,使学生不但“学会”,而且“会学”。从而培养了学生的空间想象力,又发展了学生的逻辑思维推理能力。

4、注重教具和学具的应用,有意识地突破学生学习知识的`难点 利用圆的面积这一节的教学用具辅助课堂教学,有其直观、形象而又生动的特点,它能使抽象的内容形象化,同时还不受时间和空间的限制。这节课恰当地运用教学用具和教材学具,充分调动了学生的学习兴趣,提高了课堂教学的效率。

五、教学准备

教学用具,圆形卡片学具

六、教学过程

关键词:情境教具 学具准备 操作 转化 推导 猜测观察讨论 运用交流

一、创设情境,揭示课题

1,创设情境

学校的花坛的半径为10米,我们能求出它的面积吗?

2,揭示课题

为了解决这个问题这节课我们一起学习“圆的面积”好不好?

板书:圆的面积

3,说一说

师:我们以前学过哪些平面图形的面积计算公式,把你知道的说出来与大家交流一下?

生答:

师:同学们回答得很好,今天我们就用以前我们已经掌握的数学知识来算一算圆的面积。

二、动手操作,实践探究

1,引导学生回忆之前学过平行四边形、三角形和梯形面积公式的推导方法

2、动手操作,尝试转化

1),看老师手上拿的是什么?(圆)什么叫圆的面积?能不能把圆转化成学过的图形来计算它的面积呢?

2),如果把圆平分成8等份、16等份,那请你们拿出自己动手剪开后的学具,用这些近似的等腰三角形小纸片拼一拼,看能拼成什么图形。教师巡视指导

3),用教具演示,把圆平分成16份,让学生观察圆面积的“转化”。(圆近似成了长方形)

4)、通过上面的操作,你们知道圆的面积公式推导采用的是什么方法吗?从上面的操作你得到了什么结论?

3、探究联系,推导公式

现在来看拼成的长方形面积与圆的面积有什么联系?长方形的长和宽与圆的周长和半径有什么关系呢?

1),猜测,再一次观察老师的示范

2),学生小组合作操作,每一组学生回答,并展示自己拼成的作品

3),小组讨论得出结论:圆的面积采用的是“化曲为直”的“转化”法。如果把圆平分的份数越多,每一份分得就会越小,拼成的图形就越接近长方形。

4),小组讨论总结出:拼成的长方形面积和圆的面积相等,长方形的长相当于圆的周长的一半,宽相当于半径。

5),观察,小组讨论得出公式:(板书)

长方形的面积 = 长 × 宽

圆的面积 = 周长的一半 × 半径

S =πr ×r = πr2

三、运用公式,解决问题

1、下面我们就应用圆的面积公式来解决一些生活的实际问题。出练习让学生做,巩固所学知识

2、再次出示上课前提出的情境题,让学生独立完成,再帮助学生订正。学生独立运用所学知识解答,加深对概念的理解,全班汇报交流。运用所学的知识,解决现实中的实际问题,既能达到巩固的作用,又能让学生体会到数学的应用价值。使学生加深对知识的正确认识,掌握了圆的面积计算方法。

四、课堂小结

(一)组织交流

回顾一下这节课我们学习的内容。

(1)本节所学的主要公式是什么?

(2)如果求圆的面积,必须知道什么量?

(二)总结

平面图形的面积公式推导,一般都用到“转化法”这种数学思想。圆的面积公式,在我们的生活中运用非常广泛,如计算:环形面积、圆形花坛的面积、麦田自动喷灌的面积、树干的横截面积、圆形蒙古包的面积、圆形凉亭的面积、圆形饭桌的面积、水桶底面积、圆锥沙堆的底面积等都用到圆的面积计算公式,希望大家多留意观察身边周围的事情,去发现和提出问题,再应用所学的知识去解决它,这样你的学习成绩会大有进步的!

七,板书设计

圆的面积

(1)长方形的积 = 长 × 宽

圆的面积 = 周长的一半×半径

S = πr×r = πr2

八、教学评价设计

在本节课的教学中,我在教学评价这一环节力争做到:

(一)在探究新知的过程中注重对学生数学学习过程的评价;

(二)在复习旧知识时恰当评价学生的基础知识和基本技能;

(三)在运用旧知识时重视评价学生发现问题、解决问题的能力。

《圆的面积》教学设计3

教学内容

16页—18页圆的面积

教学目标

知识与技能:

(1)、了解圆的面积的含义,经历圆面积计算公式的推导过程,掌握圆面积计算公式。

(2)、能正确运用圆的面积公式计算圆的面积,并能运用圆面积知识解决一些简单实际的问题。

过程与方法:

通过割补、拼组的方法探究圆面积的计算方法。

情感、态度与价值观:

在估一估和探究圆面积公式的活动中,体会“化曲为直”的思想,初步感受极限思想。

教学重点经历圆面积计算公式的推导过程,掌握圆面积计算公式。

教学难点理解圆面积计算公式的推导过程,能运用圆面积的知识解决一些简单实际的问题。

教具准备PPT课件,圆公式推导演示器。

学具准备等分好的圆形纸片。

教学时间一课时。

教学过程

一、基本训练。

1、复习圆的有关知识。

2、复习圆周长的计算公式。

二、问题情境。

课件演示:在草地的一个木桩上拴着一只羊,想一想这只羊能吃到草的最大范围在哪里?

学生观察并讨论,然后指名回答。

预设1:我能发现羊能吃到草一周所走过的地方刚好是一个圆形。

预设2:这个圆形的半径就是绳子的距离,也就是5米。

预设3:这个圆形的中心就是木桩所在的地方。

师:同学们说得很好。请大家说说这个圆形的面积指的是哪部分呢?

羊能吃到草的最大范围就是这个圆形的面积。

师:说得很好,今天这节课我们就来学习如何羊能吃到草的最大范围的面积有多大,也就是怎样求圆的面积呢?(板书:圆的面积)

三、建立模型。

1、认识圆的面积

师出示一个圆片:圆的面积在哪里?请同学们拿出圆片,用手摸一摸,感受一下圆的面积,你想说什么?

出示结语:圆所占平面的大小叫做圆的面积

[设计意图:通过多媒体演示圆的面积让学生在充分直观感知圆面积的基础上,概括出圆面积的意义。]

2、估算圆的面积

(1)、投影出示P16方格图,让同学们看懂图意后估算圆的面积,学生可以讨论交流。

(2)、指明反馈估算结果,并说明估算方法及依据。

①、我是根据圆里面的正方形来估计的,外面方格图面积为10×10=100平方米,圆里面的正方形面积大约为50平方米,那么这个圆形的面积大约在50——100平方米之间;

②、我是用数方格的方法来估计的。我把这个圆形平均分成4份,其中一份大约为20平方米,那么这个圆形的面积约有80平方米;

师:同学们的估计很有道理,但是在实际生活中往往要有一个精确的结果,我们接下来就来讨论一个能计算圆面积的方法。

[设计意图:巧设估算圆的面积这个环节,使学生对圆面积与r的倍数关系,获得十分鲜明的表象,让学生带着悬念去探索推导公式,与后面得出圆面积计算公式后的验证前后呼应,加深学生对圆面积的计算公式的理解和记忆。]

3、积极动脑,讨论推导方法。

回忆一下:我们以前学平行四边形、三角形、梯形的面积计算公式时都是用什么方法推导出来的?——引导转化

[设计意图:创设问题情境,启发学生回忆平行四边形、三角形和梯形面积计算公式的推导过程。激起学生用旧知探索新知的兴趣,并明确用转化的数学思想方法。]

4、小组合作,推导公式

师:那圆可转化为哪一个学过的图形呢?小组可以剪一剪、拼一拼,试试看!哪怕是近似的图形也可以。小组讨论,设计方案。展示在投影仪上并汇报。

(1)、操作感知。

操作活动一:

让学生以小组为单位将严格圆形纸片分成8等份,将每份剪下后再进行拼接。(图见课件)

问题:拼成后像什么图像?

②、操作活动二:

让学生以小组为单位将严格圆形纸片分成16等份、32等份。将每份剪下后再进行拼接。(图见课件)

(2)、讨论、交流。

通过剪拼,你发现了什么?(把圆等分的份数越多,拼成的图形越接近平行四边形或长方形。)

(3)、推导圆的面积计算公式。

学生讨论并回答:(课件演示推导过程)

5、应用圆的面积公式解决问题。(解决情景图中的问题)

[设计意图:通过小组合作、探究学习等不同形式,来调动学生的多种感官参与学习,发挥学生的主体作用,培养学生主动探究、互助合作的精神,使学生明确圆可以拼成的近似的长方形,渗透化曲为直的方法。]

四、解释应用。

1、口答:(出示课件:)

2、计算下面圆的面积。(出示课件)

3、列式计算。

(1)半径2米的圆的面积是多少平方米?

(2)直径2米的圆的面积是多少平方米?

[设计意图:学生已经掌握了圆面积的计算公式,可大胆放手让学生尝试解答,从而促进了理论与实践的结合,培养了学生灵活运用所学知识解决实际问题的能力。]

五、回顾小结。

本节课,你学会了什么?你是用什么方法探索圆的面积的计算公式的?怎样求圆的面积?

作业布置和板书设计(略)

《圆的面积》的教学设计4

一、教学内容

北京市义务教育课程改革实验数学教材第11册二、教学目标:

1.知识与技能:

使学生理解和掌握圆面积的计算公式,培养学生观察、操作、分析、概括的能力以及逻辑推理能力。

2.过程与方法:

引导学生学会利用已有的知识,运用数学思想方法,推导出圆面积计算公式;渗透极限、转化、化曲为直等数学思想方法。

3.情感态度价值观:

培养学生认真观察、深入思考,积极合作的良好品质。

三、教学重点:

通过合作探究活动,推导出圆面积公式。

四、教学难点:

理解转化后的图形各部分与圆各部分的关系。

五、教具学具准备:

圆形纸片多媒体

六、教学过程:

(一)情境导入

出示:圆桌照片

师:通过前几节课的学习,我们对圆已经有了一些认识,在我们的生活中圆也有着广泛的应用,请看老师家里就有这样一个圆桌,看到这个圆桌你能提出哪些与圆有关的数学问题?

生:圆桌一圈的长度是多少?圆桌桌面的面积是多少?

师:圆桌一圈的长度就是圆的周长,怎样求圆的周长?

怎样计算圆桌桌面的面积呢?这节课我们就一起来研究这个问题。

设计意图:根据“问题驱动式”教学模式的第一环节:创设情境,质疑激趣。教师创设了“看到这个圆桌你能提出哪些与圆有关的数学问题?”的情境引发学生提出问题,根据学生所提问题,明确本节课的学习任务

(二)合作探究

1、复习转化方法:

师:想一想,我们都学过了哪些平面图形的面积公式?(长方形、正方形、平行四边形、梯形、三角形)

师:我们以平行四边形为例,你还记得平行四边形面积公式的推导过程吗?(指名说、师投影演示)

师:在推导过程中,我们是根据以前学过图形的面积公式推导出新图形面积公式,这种方法对我们今天的学习有没有帮助呢?

师:如果有的话,你打算把圆转化成什么图形呢?到底行不行呢?下面我们小组合作探究,请看活动要求:

1、圆转化成了什么图形?2、转化后图形的各部分与圆的各部分有什么关系?3、根据转化后图形面积公式试着推导出圆的面积公式。

2、小组合作探究,师巡视,指导。

设计意图:根据“问题驱动式”教学模式的第二环节:问题驱动,自主探究。

教师让学生带着3个问题进行自主探究的活动

3、汇报展示

预设:

学生方法1:将圆等分成(8份、16份、)拼成一个近似的平行四边形,平行四边形的底相当于圆周长的一半,上面的底就是圆周长的另一半。平行四边形的高相当于圆的半径。圆周长的一半乘半径就是圆面积的公式:∏r2。

学生方法2:将圆等分成若干份,拼成一个梯形或三角形。

学生方法3:用圆的一部分推出面积公式。(一个近似三角形的面积×份数)

板书:学生汇报的思路,即转化后图形各部分与圆各部分的关系,让学生的理解更清晰。

设计意图:根据“问题驱动式”教学模式的第三环节:碰撞交流,研讨辩论。教师让学生在汇报过程中注意倾听同伴的发言,如果有问题,让学生再重复一遍,让学生发现同学在汇报中存在的问题,互相提问、质疑、解决问题。

4、课件演示,体验极限、化曲为直等数学思想。

5、资料介绍,感受数学文化,

师:现在我们已经知道了圆面积的计算公式,根据老师给你的数学信息,现在你能算一算这个圆桌面的面积了吗?(出示圆桌的照片,并给出圆桌的半径是40厘米)

生:一人板书,其他学生本上练习。集体订正。

6、知识性小结:

师:如果我们想计算圆的面积,必须知道什么条件?

生:半径。

师:还可以知道什么,也能求出圆的面积?

生:圆的直径或圆的周长?

师:怎么求?

设计意图:根据“问题驱动式”教学模式的第四环节:总结提升,纳入认知。

教师根据本节课所学内容提出了第一个问题“如果我们想计算圆的面积,必须知道什么条件?”根据学生的回答,教师又适时地提出了第二个问题“还可以知道什么,也能求出圆的面积?”通过两个问题的提出,让学生不仅明确知道半径可以求圆的面积,知道圆的直径、周长也可以求圆的面积,进一步丰富学生计算圆面积的方法,提升学生的认知。

(三)解决问题:

1、口算下面各圆的面积。

2、填写下表。

半径直径周长面积

2厘米

6厘米

厘米

3、某公园里有一个边长是10米的正方形嬉水池,正中间有一个人工喷泉,设计要求喷出的水不能落到水池以外。这个喷泉的喷水面积最大是多少平方米?

(四)全课总结

板书设计:圆的面积

转化平行四边形面积=底×高

联系圆的面积=×r=×r

=πr×r=πr2

公式S=πr2

20 501612
");