初三数学公开课教案精选4篇

网友 分享 时间:

【路引】由阿拉题库网美丽的网友为您整理分享的“初三数学公开课教案精选4篇”文档资料,以供您学习参考之用,希望这篇范文对您有所帮助,喜欢就复制下载支持吧!

关于九年级数学教案【第一篇】

1、了解旋转及其旋转中心和旋转角的概念,了解旋转对应点的概念及其应用它们解决一些实际问题。

2、通过复习轴对称的有关概念及性质,从生活中的数学开始,经历观察,产生概念,应用概念解决一些实际问题。

3、旋转的基本性质。

重点

旋转及对应点的有关概念及其应用。

难点

旋转的基本性质。

一、复习引入

(学生活动)请同学们完成下面各题。

1、将如图所示的四边形ABCD平移,使点B的对应点为点D,作出平移后的图形。

2、如图,已知△ABC和直线l,请你画出△ABC关于l的对称图形△A′B′C′。

3、圆是轴对称图形吗?等腰三角形呢?你还能指出其它的吗?

(口述)老师点评并总结:

(1)平移的有关概念及性质。

(2)如何画一个图形关于一条直线(对称轴)的对称图形并口述它具有的一些性质。

(3)什么叫轴对称图形?

二、探索新知

我们前面已经复习有关内容,生活中是否还有其它运动变化呢?回答是肯定的,下面我们就来研究。

1、请同学们看讲台上的大时钟,有什么在不停地转动?旋转围绕什么点呢?从现在到下课时针转了多少度?分针转了多少度?秒针转了多少度?

(口答)老师点评:时针、分针、秒针在不停地转动,它们都绕时钟的中心。从现在到下课时针转了________度,分针转了________度,秒针转了________度。

2、再看我自制的好像风车风轮的玩具,它可以不停地转动。如何转到新的位置?(老师点评略)

3、第1,2两题有什么共同特点呢?

共同特点是如果我们把时钟、风车风轮当成一个图形,那么这些图形都可以绕着某一固定点转动一定的角度。

像这样,把一个图形绕着某一点O转动一个角度的图形变换叫做旋转,点O叫做旋转中心,转动的角叫做旋转角。

如果图形上的点P经过旋转变为点P′,那么这两个点叫做这个旋转的对应点。

下面我们来运用这些概念来解决一些问题。

例1 如图,如果把钟表的指针看做三角形OAB,它绕O点按顺时针方向旋转得到△OEF,在这个旋转过程中:

(1)旋转中心是什么?旋转角是什么?

(2)经过旋转,点A,B分别移动到什么位置?

解:(1)旋转中心是O,∠AOE,∠BOF等都是旋转角。

(2)经过旋转,点A和点B分别移动到点E和点F的位置。

自主探究:

请看我手里拿着的硬纸板,我在硬纸板上挖下一个三角形的洞,再挖一个点O作为旋转中心,把挖好的硬纸板放在黑板上,先在黑板上描出这个挖掉的三角形图案(△ABC),然后围绕旋转中心O转动硬纸板,在黑板上再描出这个挖掉的三角形(△A′B′C′),移去硬纸板。

(分组讨论)根据图回答下面问题(一组推荐一人上台说明)

1、线段OA与OA′,OB与OB′,OC与OC′有什么关系?

2、∠AOA′,∠BOB′,∠COC′有什么关系?

3、△ABC与△A′B′C′的形状和大小有什么关系?

老师点评:=OA′,OB=OB′,OC=OC′,也就是对应点到旋转中心的距离相等。

2、∠AOA′=∠BOB′=∠COC′,我们把这三个相等的角,即对应点与旋转中心所连线段的夹角称为旋转角。

3、△ABC和△A′B′C′形状相同和大小相等,即全等。

综合以上的实验操作得出:

(1)对应点到旋转中心的距离相等;

(2)对应点与旋转中心所连线段的夹角等于旋转角;

(3)旋转前、后的图形全等。

例2 如图,△ABC绕C点旋转后,顶点A的对应点为点D,试确定顶点B的对应点的位置,以及旋转后的三角形。

分析:绕C点旋转,A点的对应点是D点,那么旋转角就是∠ACD,根据对应点与旋转中心所连线段的夹角等于旋转角,即∠BCB′=∠ACD,又由对应点到旋转中心的距离相等,即CB=CB′,就可确定B′的位置,如图所示。

解:(1)连接CD;

(2)以CB为一边作∠BCE,使得∠BCE=∠ACD;

(3)在射线CE上截取CB′=CB,则B′即为所求的B的对应点;

(4)连接DB′,则△DB′C就是△ABC绕C点旋转后的图形。

三、课堂小结

(学生总结,老师点评)

本节课应掌握:

1、对应点到旋转中心的距离相等;

2、对应点与旋转中心所连线段的夹角等于旋转角;

3、旋转前、后的图形全等及其它们的应用。

四、作业布置

教材第62~63页 习题4,5,6.

初三数学教学设计【第二篇】

第1章反比例函数

反比例函数

教学目标

知识与技能

理解反比例函数的概念,根据实际问题能列出反比例函数关系式。

过程与方法

经历从实际问题抽象出反比例函数的探索过程,发展学生的抽象思维能力。

情感态度

培养观察、推理、分析能力,体会由实际问题转化为数学模型,认识反比例函数的应用价值。

教学重点

理解反比例函数的概念,能根据已知条件写出函数解析式。

教学难点

能根据实际问题中的条件确定反比例函数的解析式,体会函数的模型思想。

教学过程

一、情景导入,初步认知

1、复习小学已学过的反比例关系,例如:

(1)当路程s一定,时间t与速度v成反比例,即vt=s(s是常数)

(2)当矩形面积一定时,长a和宽b成反比例,即ab=S(S是常数)

2、电流I、电阻R、电压U之间满足关系式U=IR,当U=220V时,请你用含R的代数式表示I吗?

教学说明对相关知识的复习,为本节课的学习打下基础。

二、思考探究,获取新知

探究1:反比例函数的概念

(1)一群选手在进行全程为3000米的_比赛时,各选手的平均速度v(m/s)与所用时间t(s)之间有怎样的关系?并写出它们之间的关系式。

(2)利用(1)的关系式完成下表:

(3)随着时间t的变化,平均速度v发生了怎样的变化?

(4)平均速度v是所用时间t的函数吗?为什么?

(5)观察上述函数解析式,与前面学的一次函数有什么不同?这种函数有什么特点?

归纳结论一般地,如果两个变量x,y之间可以表示成y=(k为常数且k≠0)的形式,那么称y是x的反比例函数。其中x是自变量,常数k称为反比例函数的比例系数。

教学说明先让学生进行小组合作交流,再进行全班性的问答或交流。学生用自己的语言说明两个变量间的关系为什么可以看作函数,了解所讨论的函数的表达形式。探究2:反比例函数的自变量的取值范围思考:在上面的问题中,对于反比例函数v=3000/t,其中自变量t可以取哪些值呢?分析:反比例函数的自变量的取值范围是所有非零实数,但是在实际问题中,应该根据具体情况来确定该反比例函数的自变量取值范围。由于t代表的是时间,且时间不能为负数,所有t的取值范围为t>0.

教学说明教师组织学生讨论,提问学生,师生互动。

三、运用新知,深化理解

1、见教材P3例题。

2、下列函数关系中,哪些是反比例函数?

(1)已知平行四边形的面积是12cm2,它的一边是acm,这边上的高是hcm,则a与h的函数关系;

(2)压强p一定时,压力F与受力面积S的关系;

(3)功是常数W时,力F与物体在力的方向上通过的距离s的函数关系。

(4)某乡粮食总产量为m吨,那么该乡每人平均拥有粮食y(吨)与该乡人口数x的函数关系式。

分析:确定函数是否为反比例函数,就是看它们的解析式经过整理后是否符合y=(k是常数,k≠0)。所以此题必须先写出函数解析式,后解答。

解:

(1)a=12/h,是反比例函数;

(2)F=pS,是正比例函数;

(3)F=W/s,是反比例函数;

(4)y=m/x,是反比例函数。

3、当m为何值时,函数y=是反比例函数,并求出其函数解析式。分析:由反比例函数的定义易求出m的值。解:由反比例函数的定义可知:2m-2=1,m=3/2.所以反比例函数的解析式为y=。

4、当质量一定时,二氧化碳的体积V与密度ρ成反比例。且V=5m3时,ρ=/m3

(1)求p与V的函数关系式,并指出自变量的取值范围。

(2)求V=9m3时,二氧化碳的密度。

解:略

5、已知y=y1+y2,y1与x成正比例,y2与x2成反比例,且x=2与x=3时,y的值都等于19.求y与x间的函数关系式。

分析:y1与x成正比例,则y1=k1x,y2与x2成反比例,则y2=k2x2,又由y=y1+y2,可知,y=k1x+k2x2,只要求出k1和k2即可求出y与x间的函数关系式。

解:因为y1与x成正比例,所以y1=k1x;因为y2与x2成反比例,所以y2=,而y=y1+y2,所以y=k1x+,当x=2与x=3时,y的值都等于19.

教学说明加深对反比例函数概念的理解,及掌握如何求反比例函数的解析式。

四、师生互动、课堂小结

先小组内交流收获和感想,而后以小组为单位派代表进行总结。教师作以补充。

课后作业

布置作业:教材“习题”中第1、3、5题。

教学反思

学生对于反比例函数的概念理解的都很好,但在求函数解析式时,解题不够灵活,如解答第5题时,不知如何设未知数。在这方面应多加练习。

初三数学教案【第三篇】

教学内容:

义务教育课程标准实验教科书(人教版)三年级上册第三者112页例1简单的组合。

教学目标:

1、通过观察、猜测、操作等活动,找出最简单的事物的组合数。

2、经历探索简单事物组合规律的过程。

3、培养学生有顺序地全面地思考问题的意识。

4、感受数学与生活的紧密联系,激发学生学好数学的信心。

教学重点:

经历探索简单事物组合规律的过程。

教学难点:

能用不同的方法准确地计算出组合数。

教具准备:

教学课件学具准备:每生准备主题图中相关的学具卡片或实物。

教学过程:

(一)创设问题情境:

师:小朋友,你们喜欢老师漂亮一点呢还是喜欢老师丑一点?

生:大多数的小朋友说喜欢老师漂亮。

师:那你们帮助老师打扮打扮。我最喜欢红色体恤和这三件下衣,到底怎样搭配最漂亮呢?请小朋友们给老师出出主意。小朋友们纷纷发表自己的意见,并说出了自己的理由。

师:谢谢。你们的建议都不错。那我这一件上衣、三件下衣能有多少种不同的穿法呢?

老师接着问:那我有两件上衣、三件下衣又有多少种不同的穿法呢?有说4种、有说5种、也有说6种的,到底有几种呢?

(二)

1.自主合作探索新知试一试

师:请同学们也试着想一想,如果你觉得直接想象有困难的话可以借助手中的学具卡片摆一摆。学生活动教师巡视。

2.发现问题学生汇报所写个数,教师根据巡视的情况重点展示几份,引导学生发现问题:有的重复了,有的漏写了。

3.小组讨论师:每个同学算出的个数不同,怎样才能很快算出两件上衣、三件下衣有多少种不同的穿法呢?并做到不重复不遗漏呢?学生以小组为单位交流讨论。

4.小组汇报汇报时可能会出现下面几种情况:

(1)、无序的。用学具卡片或实物摆,然后再数。

(2)、用连线的方法算出。

(3)、用图式的方法算出。引导学生及时评价每一种方法的优缺点,使其把适合自己的方法掌握起来。

5.小结教师简单小结学生所想方法引出练习内容见课本112页。

(三)拓展应用

数字2、3、4、5、6、7写出不同的两位数?写完交流。(或者也可用这样一道题:用△○□能摆成6种排法,例如:□○△请你试着摆出其他几种排法。

教学反思:

关于九年级数学教案【第四篇】

1、教材分析

(1)知识结构

(2)重点、难点分析

重点:三角形内切圆的概念及内心的性质。因为它是三角形的重要概念之一。

难点:①难点是“接”与“切”的含义,学生容易混淆;②画三角形内切圆,学生不易画好。

2、教学建议

本节内容需要一个课时。

(1)在教学中,组织学生自己画图、类比、分析、深刻理解三角形内切圆的概念及内心的性质;

(2)在教学中,类比“三角形外接圆的画图、概念、性质”,开展活动式教学。

教学目标 :

1、使学生了解尺规作的方法,理解三角形和多边形的内切圆、圆的外切三角形和圆的外切多边形、三角形内心的概念;

2、应用类比的数学思想方法研究内切圆,逐步培养学生的研究问题能力;

3、激发学生动手、动脑主动参与课堂教学活动。

教学重点:

三角形内切圆的作法和三角形的内心与性质。

教学难点 :

三角形内切圆的作法和三角形的内心与性质。

教学活动设计

(一)提出问题

1、提出问题:如图,你能否在△ABC中画出一个圆?画出一个的圆?想一想,怎样画?

2、分析、研究问题:

让学生动脑筋、想办法,使学生认识作三角形内切圆的实际意义。

3、解决问题:

例1 作圆,使它和已知三角形的各边都相切。

引导学生结合图,写出已知、求作,然后师生共同分析,寻找作法。

提出以下几个问题进行讨论:

①作圆的关键是什么?

②假设⊙I是所求作的圆,⊙I和三角形三边都相切,圆心I应满足什么条件?

③这样的点I应在什么位置?

④圆心I确定后半径如何找。

A层学生自己用直尺圆规准确作图,并叙述作法;B层学生在老师指导下完成。

完成这个题目后,启发学生得出如下结论: 和三角形的各边都相切的圆可以作一个且只可以作出一个。

(二)类比联想,学习新知识。

1、概念:和三角形各边都相切的圆叫做,内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形。

2、类比:

名称

确定方法

图形

性质

外心(三角形外接圆的圆心)

三角形三边中垂线的交点

(1)OA=OB=OC;

(2)外心不一定在三角形的内部。

内心(三角形内切圆的圆心)

三角形三条角平分线的交点

(1)到三边的距离相等;

(2)OA、OB、OC分别平分∠BAC、∠ABC、∠ACB;

(3)内心在三角形内部。

3、概念推广:和多边形各边都相切的圆叫做多边形的内切圆,这个多边形叫做圆的外切多边形。

4、概念理解:

引导学生理解及圆的外切三角形的概念,并与三角形的外接圆与圆的内接三角形概念相比较,以加深对这四个概念的理解。使学生弄清“内”与“外”、“接”与“切”的含义。“接”与“切”是说明三角形的顶点和边与圆的关系:三角形的顶点都在圆上,叫做“接”;三角形的边都与圆相切叫做“切”。

(三)应用与反思

例2 如图,在△ABC中,∠ABC=50°,∠ACB=75°,点O是三角形的内心。

求∠BOC的度数

分析:要求∠BOC的度数,只要求出∠OBC和∠0CB的度数之和就可,即求∠l十∠3的度数。因为O是△ABC的内心,所以OB和OC分别为∠ABC和∠BCA的平分线,于是有∠1十∠3= (∠ABC十∠ACB),再由三角形的内角和定理易求出∠BOC的度数。

解:(引导学生分析,写出解题过程)

例3 如图,△ABC中,E是内心,∠A的平分线和△ABC的外接圆相交于点D

求证:DE=DB

分析:从条件想,E是内心,则E在∠A的平分线上,同时也在∠ABC的平分线上,考虑连结BE,得出∠3=∠4.

从结论想,要证DE=DB,只要证明BDE为等腰三角形,同样考虑到连结BE.于是得到下述法。

证明:连结BE.

E是△ABC的内心

又∵∠1=∠2

∠1=∠2

∴∠1+∠3=∠4+∠5

∴∠BED=∠EBD

∴DE=DB

练习分析作出已知的锐角三角形、直角三角形、钝角,并说明三角形的内心是否都在三角形内。

(四)小结

1、教师先向学生提出问题:这节课学习了哪些概念?怎样作已知?学习时互该注意哪些问题?

2、学生回答的基础上,归纳总结:

(1)学习了三角形内切圆、三角形的内心、圆的外切三角形、多边形的内切圆、圆的外切多边形的概念。

(2)利用作三角形的内角平分线,任意两条角平分线的交点就是内切圆的圆心,交点到任意一边的距离是圆的半径。

(3)在学习有关概念时,应注意区别“内”与“外”,“接”与“切”;还应注意“连结内心和三角形顶点”这一辅助线的添加和应用。

(五)作业

教材P115习题中,A组1(3),10,11,12题;A层学生多做B组3题。

探究活动

问题:如图1,有一张四边形ABCD纸片,且AB=AD=6cm,CB=CD=8cm,∠B=90°。

(1)要把该四边形裁剪成一个面积的圆形纸片,你能否用折叠的方法找出圆心,若能请你度量出圆的半径(精确到);

(2)计算出的圆形纸片的半径(要求精确值)。

提示:(1)由条件可得AC为四边形似的对称轴,存在内切圆,能用折叠的方法找出圆心:

如图2,①以AC为轴对折;②对折∠ABC,折线交AC于O;③使折线过O,且EB与EA边重合。则点O为所求圆的圆心,OE为半径。

(2)如图3,设内切圆的半径为r,则通过面积可得:6r+8r=48,∴r=。

20 488136
");