小学五年级数学《分数与除法》教案(精编4篇)
【路引】由阿拉题库网美丽的网友为您整理分享的“小学五年级数学《分数与除法》教案(精编4篇)”文档资料,以供您学习参考之用,希望这篇范文对您有所帮助,喜欢就复制下载支持吧!
小学数学《分数与除法》优秀教学设计1
教学目标:
1、通过观察、探究,理解分数与除法的关系,并会用分数表示两个数相除的商。
2、经历分数与除法的关系的探究过程,明确可以用分数表示两个数相除的商。
3、通过观察、探究,渗透辩证思想,激发学生学习兴趣。
教学重难点:
重点:掌握分数与除法的关系,会用分数表示两个数相除的商。
难点:理解可以用分数表示两个数相除的商。
教学过程:
一、导入揭题。
1、复习:76是()数,它表示()。10/7的分数单位是(),它有()个这样的分数单位。
2、观察:5÷8=4÷9=这两道题能得到整数商吗?
3、谈话:同学们,在计算整数除法时经常会遇到除不尽或得不到整数商,有了分数就可以解决这个问题了,这是什么原因呢?这节课就让我们一起来探究分数与除法的关系。板书课题:《分数与除法》。
二、探索新知
1、教学例1
(1)课件出示例1
把一个蛋糕平均分给3人,每人分得多少个?
(2)同桌讨论交流:根据分数的意义怎样解决“把一个蛋糕平均分给3人,每人分得多少个?”这个问题。
(3)汇报讨论结果
(4)观察这两种解法有什么联系?
2、教学例2、
把3个饼平均分给4个孩子,每个孩子分得多少个?
(1)平均分同样可以列式为:3÷4。
(2)小组合作探究:3÷4的商能不能用分数表示呢?
(3)通过进一步探究,你发现分数与除法有什么关系了吗?
师生共同小结:被除数÷除数=除数被除数,被除数相当于分数的(分子),除数相当于分数的(分母),a÷b=ba(b≠0)想一想:为什么要注明b≠0?
三、拓展应用
一个正方形的周长是64cm,它的边长是周长的几分之几?
四、总结
通过这节课的学习,你有什么收获?
五、作业布置
完成教材第50页"做一做"
读书破万卷下笔如有神,以上就是差异网为大家整理的4篇《小学五年级数学《分数与除法》教案》,希望可以启发您的一些写作思路。
总结提高。2
师:这节课我们学习了分数与除法的关系,你理解了什么?
教学重难点:3
1、理解、归纳分数与除法的关系。
2、用除法的意义理解分数的意义。
3、理解分数的两种意义。
教具准备:圆片。
小学五年级数学《分数与除法》教案4
教学内容:
49~50页的内容及练习十二1~12题。
教学目标:
1、知识与能力:并会用分数表示两个数相除的商,明确可以用分数表示两个数相除的商。
2、过程与方法:通过观察、探究,理解分数与除法的关系,经历分数与除法的关系的探究过程
3、情感、态度与价值观:通过观察、探究,渗透辩证思想,激发学生学习兴趣。
教学重点:
掌握分数与除法的关系,会用分数表示两个数相除的商。
教学难点:
理解可以用分数表示两个数相除的商。
教具准备:
课件
教学过程:
一、复习导入
1、 表示什么意思?它的分数单位是什么?它有几个这样的分数单位?
2、把一根铁丝平均截成3段,每段的长度是这根铁丝的几分之几,把谁看作单位“1”?
3、引入:5除以9,商是多少?板书:5÷9
如果商不用小数表示,还有其他方法吗?学习了分数与除法的关系后,就能解决这个问题了。板书课题:分数与除法。
二、新课讲授
1、教学例1:出示题目
(1)列出算式。(板书:1÷3=)
(2)讨论:1除以3结果是多少?你是怎样想的?
(3)教师画出示意图。把一个蛋糕平均分成3份,其中一份应是这个蛋糕的 ,就是 个“1”。
板书:1÷3= 1/3(个)
2、教学例2:出示题目
(1)动手操作。拿出三张同样大小的圆形纸片,把它看作3块饼,用剪刀把它们分成同样大小的4份。
(2)口述方法及每份分得的结果,教师总结几种不同的分法。
(3)归纳:从上面的操作可以看出,把3块饼平均分成4份,无论怎样分,每一份都是3块饼的 ,即3个 块,把3个 块饼合起来就是1个饼的 ,即 块,因此,3÷4=3/4 (块)。
由此可见, 不仅可以理解为把1块饼(单位“1”)平均分成4份,表示这样的3份的数,也可以看作把3块饼组成的整体(单位“1”)平均分成4份,表示这样1份的数。
学生相互说说 表示的意义。
3、教学分数与除法的关系。
(1)观察1÷3= 3÷4= 这两道算式,
想一想
①两个(非0)自然数相除,在不能得到整数商的情况下还可以用什么数表示?
②用分数表示商时,除式里的被除数,除数分别是分数里的什么?
③分数与除法的关系是怎样的?
(2)总结三点
①分数可以表示除法的商。
②在表示除法的商时,要用除数作分母,被除数作分子。
③除法里的被除数相当于分数里的分子,除数相当于分数里的分母(强调“相当于”一词)。分数与除法的关系可以表示成下面的形式
(3)如果用a表示被除数,b表示除数,那么分数与除法的关系可以怎样表示
板书:a÷b=a/b (b≠0)
(4)这里的b能为0吗?为什么?
明确:两个整数相除,商可以用分数表示,反过来,分数能不能看作两个整数相除?(可以,分数的分子相当于除法中的被除数,分母相当于除数)
(5)分数与除法有区别吗?区别在哪里?
(分数是一种数,但也可以看作两个数相除,除法是一种运算)
4、教学例3:出示题目
(1)列出算式。板书:7÷10
(2)怎样计算?。7÷10=
三、巩固练习。
1、做一做:独立完成,集体订正。
2、练习十二的第1、2题:独立完成,订正时说一说怎样计算。
第3、4题:做在书上,集体订正。
第5、6题:独立完成,订正时说一说是怎么想的。
3、作业:练习十二7----11题,选作12题。
四、课堂小结
这节课学习了什么知识,你有哪些收获?
板书设计:
分数与除法
例1:1÷3= 1/3(个)
例2:3÷4=3/4 (个)
例3:7÷10= 7/10
上一篇:秋天的怀念教案【精编4篇】
下一篇:心理健康主题班会教案【实用4篇】