《平行四边形的认识》教案【4篇】

网友 分享 时间:

【路引】由阿拉题库网美丽的网友为您整理分享的“《平行四边形的认识》教案【4篇】”文档资料,以供您学习参考之用,希望这篇范文对您有所帮助,喜欢就复制下载支持吧!

平行四边形教案【第一篇】

教材简析:

1.紧密联系学生已有经验,通过丰富的学习活动,帮助学生直观认识常见的平面图形。教材通过折正方形纸,让学生直观认识三角形,把两个完全相同的三角形拼成一个平行四边形,直观地认识平行四边形。这样安排,既符合低年级学生的认知特点,也有利于他们主动地认识平面图形。

2.把图形的变换,图形间的联系放在重要位置。教材只要求学生直观认识三角形、平行四边形,没有深入研究它们的特征。但是教材安排了许多折、剪、拼的活动,比较多地将一种图形变换成另一种图形。这些操作活动,能使学生感受图形之间的联系,有利于培养学生空间观念和解决问题的能力,有利于发展学生的。数学思维。

3.教材设计了一些开放性问题,如在钉子板上围三角形、平行四边形,围成的这些图形可以有大有小,有不同的位置,用一个长方形剪成两个完全一样的三角形拼一拼,可以拼成多种图形。这些题能激起学生独立探索的精神,相互合作的愿望,有利于改善教学方式,培养学生的创新意识。

教学目标:

1.通过把长方形成或正方形折、剪、拼等活动,直观认识三角形和平行四边形,知道三角形和平行四边形的名称,并能识别三角形、平行四边形,初步了解三角形、平行四边形在日常生活中的应用。

2.在折图形、剪图形、摆图形、拼图形等活动中,使学生体会图形的变换,发展对图形的空间想像能力。

3.使学生在学习活动中积累对数学的兴趣 ,增强与同学的交往、合作的意识。

教学重点与难点:从三角形、平行四边形实物中抽象出平面图形,并让学生正确认识它们。

教具准备:长方形、正方形纸各一张,不同形状的三角形、平行四边形若干个,剪刀一把,钉子板和20页上半页的图片。

学具准备:长方形纸、正分形纸、直角三角形纸若干张、剪刀、学具盒。

教学过程:

一、游戏激趣,创设情境

小朋友,你们喜欢折纸吗?你们想折吗?今天老师就和你们一起玩折纸游戏好吗?

二、动手操作,探索新知

1.折一折,认识三角形

(1)教师手中拿的是什么图形的纸?(正方形纸)请小朋友们拿出和老师手中一样的正方形纸,你能把这张正方形的纸对折成完全一样的两部分吗?(教师巡视,如有学生对对折不理解要及时指导。)

(2)展示成果。

哪位小朋友愿意上来说一说你是怎样折的?

①对折成两个完全一样的长方形。(这是我们已经认识的)

②对折两个完全一样的三角形。(贴出图形)问:这是什么图形?(板书:三角形)

平行四边形教案【第二篇】

一、素质教育目标

(一)知识教学点

1.掌握平行四边形的判定定理1、2、3、4,并能与性质定理、定义综合应用.

2.使学生理解判定定理与性质定理的区别与联系.

3.会根据简单的条件画出平行四边形,并说明画图的依据是哪几个定理.

(二)能力训练点

1.通过“探索式试明法”开拓学生思路,发展学生思维能力.

2.通过教学,使学生逐步学会分别从题设或结论出发寻求论证思路的分析方法,进一步提高学生分析问题,解决问题的能力.

(三)德育渗透点

通过一题多解激发学生的学习兴趣.

(四)美育渗透点

通过学习,体会几何证明的'方法美.

二、学法引导

构造逆命题,分析探索证明,启发讲解.

三、重点·难点·疑点及解决办法

1.教学重点:平行四边形的判定定理1、2、3的应用.

2.教学难点:综合应用判定定理和性质定理.

3.疑点及解决办法:在综合应用判定定理及性质定理时,在什么条件下用判定定理,在什么条件下用性质定理(强调在求证平行四边形时用判定定理,在已知平行四边形时用性质定理).

四、课时安排

2课时

五、教具学具准备

投影仪,投影胶片,常用画图工具

六、师生互动活动设计

复习引入,构造逆命题,画图分析,讨论证法,巩固应用.

七、教学步骤

复习提问

1.平行四边形有什么性质?学生回答教师板书

2.将以上性质定理分别用命题的形式叙述出来.

引入新课

用投影仪打出上述命题的逆命题.

上述第一个逆命题显然是正确的,因为它就是平行四边形的定义,所以它也是我们判定一个四边形是否为平行四边形的基本方法(定义法).

那么其它逆命题是否正确呢?如果正确就可得到另外的判定方法(写出命题).

讲解新课

1.平行四边形的判定

我们知道,平行四边形的对角相等,反过来对角相等的四边形是平行四边形吗?

如图1,在四边形中,如果,那么.

∴.

同理.

∴四边形是平行四边形,因此得到:

平行四边形判定定理1:两组对角分别相等的四边形是平行四边形.

类似地,我们还会想到,两组对边相等的四边形是平行四边形吗?

如图1,如果,,连结,则△ ≌△得到,,那么,,则四边形是平行四边形.

由此得到:

平行四边形判定定理2:两组对边分别相等的四边形是平行四边形.

(判定定理1、2的证明采用了探索式的证明方法,即根据题设和已有知识,经过推理得出结论,然后总结成定理).

我们再来证明下面定理

平行四边形判定定理3:对角线互相平分的四边形是平行四边形.

(该定理采用规范证法,如图1由学生自己证明,教师可引导学生用前面三种依据分别证明,借以巩固所学知识)

2.判定定理与性质定理的区别与联系

判定定理1、2、3分别是相应性质定理的逆定理,彼此之间分别为互逆定理,在使用时不得混淆.

例1已知:是对角线上两点,并且,如右图.

求证:四边形是平行四边形.

分析:因为四边形是平行四边形,所以对边平行且相等,由已知易证出两组三角形全等,用定义或判定定理1、2都可以,还可以连结交于利用判定定理3简单.

证明:(由学生用各种方法证明,可以巩固所学过的知识和作辅助线的方法,并比较各种证法的优劣,从而获得证题的技巧).

总结、扩展

1.小结:(投影打出)

(1)本堂课所讲的判定定理有

(2)在今后解决平行四边形问题时要尽可能地运用平行四边形的相应定理,不要总是依赖于全等三角形,否则不利于掌握新的知识.

2.思考题

教材P144B.3

八、布置作业

教材P142中7;P143中8、9、10

九、板书设计

xxx

十、随堂练习

教材P138中1、2

补充

1.下列给出了四边形中、 、的度数之比,其中能判定四边形是平行四边形的是()

A.1:2:3:4 B.2:2:3:3

C.2:3:2:3 D.2:3:3:2

2.在下面给出的条件中,能判定四边形是平行四边形的是()

A.,B.,

C.,D.,

3.已知:在中,点、在对角线上,且.

求证:四边形是平行四边形.

平行四边形教案【第三篇】

教学目标:

1.经历探索平行四边形有关概念和性质的过程,在活动中发展学生的探究意识和合作交流的习惯;

2.索并掌握平行四边形的性质,并能简单应用;

3.在探索活动过程中发展学生的探究意识。

教学重点:平行四边形性质的探索。

教学难点:平行四边形性质的理解。

教学准备:多媒体课件

教学过程

第一环节:实践探索,直观感知(5分钟,动手实践、探索、感知,学生进一步探索了平行四边形的概念,明确了平行四边形的本质特征。)

1.小组活动一

内容:

问题1:同学们拿出准备好的剪刀、彩纸或白纸一张。将一张纸对折,剪下两张叠放的三角形纸片,将它们相等的一边重合,得到一个四边形。

(1)你拼出了怎样的四边形?与同桌交流一下;

(2)给出小明拼出的四边形,它们的对边有怎样的位置关系?说说你的理由,请用简捷的语言刻画这个图形的特征。

2.小组活动二

内容:生活中常见到平行四边形的实例有什么呢?你能举例说明吗?

第二环节探索归纳、合作交流(5分钟,学生动手、动嘴,全班交流)

小组活动3:

用一张半透明的纸复制你刚才画的平行四边形,并将复制后的四边形绕一个顶点旋转180°,你能平移该纸片,使它与你画的平行四边形重合吗?由此你能得到哪些结论?四边形的'对边、对角分别有什么关系?能用别的方法验证你的结论吗?

(1)让学生动手操作、复制、旋转、观察、分析;

(2)学生交流、议论;

(3)教师利用多媒体展示实践的过程。

第三环节推理论证、感悟升华(10分钟,学生通过说理,由直观感受上升到理性分析,在操作层面感知的基础上提升,并了解图形具有的数学本质。)

实践探索内容

(1)通过剪纸,拼纸片,及旋转,可以观察到平行四边行的对角线把它分成的两个三角形全等。

(2)可以通过推理来证明这个结论,如图连结AC。

∵四边形ABCD是平行四边形

∴AD//BC,AB//CD

∴∠1=∠2,∠3=∠4

∴△ABC和△CDA中

∠2=∠1

AC=CA

∠3=∠4

∴△ABC≌△CDA(ASA)

∴AB=DC,AD=CB,∠D=∠B

又∵∠1=∠2

∠3=∠4

∴∠1+∠3=∠2+∠4

即∠BAD=∠DCB

第四环节应用巩固深化提高(10分钟,通过议一议,练一练,学生进一步理解平行四边形的性质,并进行简单合情推理,体现性质的应用,同时从不同角度平移、旋转等再一次认识平行四边形的本质特征。)

1.活动内容:

(1)议一议:如果已知平行四边形的一个内角度数,能确定其它三个内角的度数吗?

A(学生思考、议论)

B总结归纳:可以确定其它三个内角的度数。

由平行四边形对边分边平行得到邻角互补;又由于平行四边形对角相等,由此已知平行四边形的一个内角的度数,可以确定其它三个角度数。

(2)练一练(P99随堂练习)

练1如图:四边形ABCD是平行四边形。

(1)求∠ADC、∠BCD度数

(2)边AB、BC的度数、长度。

练2四边形ABCD是平行四边形

(1)它的四条边中哪些线段可以通过平移相到得到?

(2)设对角线AC、BD交于O;AO与OC、BO与OD有何关系?说说理由。

归纳:平行四边形的性质:平行四边形的对角线互相平分。

第五环节评价反思概括总结(8分钟,学生踊跃谈感受和收获)

活动内容

师生相互交流、反思、总结。

(1)经历了对平行四边形的特征探索,你有什么感受和收获?给自己一个评价。

(2)在与同伴合作交流中练表现,优秀方面有哪些?你看到同伴哪些优点?

(3)本节学习到了什么?(知识上、方法上)

考一考:

中,∠B=60°,则∠A=,∠C=,∠D=。

中,∠A比∠B大20°,则∠C=。

中,AB=3,BC=5,则AD=CD=。

中,周长为40cm,△ABC周长为25,则对角线AC=()cm。

布置作业

课本习题

A组(学优生)1、2

B组(中等生)1、2

C组(后三分之一生)1、2

八年级数学教案:《平行四边形》【第四篇】

教学目标

1、使学生在理解的基础上掌握平行四边形面积的计算公式,并会运用公式正确地计算平行四边形的面积。

2、通过操作、观察、比较,发展学生的空间观念,培养学生运用转化的思考方法解决问题的能力和逻辑思维能力。

3、对学生进行辩诈唯物主义观点的启蒙教育。

教学重点

理解公式并正确计算平行四边形的面积。

教学难点

理解平行四边形面积公式的推导过程。

教学过程

一、复习引入

1、拿出事先准备好的长方形和平行四边形。量出它的长和宽(平行四边形量出底和高)。

2、观察老师出示的几个平行四边形,指出它的底和高。

3、教师出示一个长方形和一个平行四边形。

猜测:

哪一个图形面积比较大?大多少平方厘米呢?

师:要想我们准确的答案,就要用到今天所学的知识--平行四边形面积的计算(板书课题)

二、指导探究

1、数方格方法

(1)小组合作讨论:

a、图上标的厘米表示什么?每个小方格表示1平方厘米为什么?

b、长方形的长是多少厘米?宽是多少厘米?面积是多少平方厘米?

c、用数方格的方法,求出平行四边形的面积?(不满一格的,都按半格计算)

d、比较平行四边形的底和长方形的长,再比较平行四边形的高和长方形的宽,你发现了什么?

(2)集体订正

(3)请同学评价一下用数方格的方法求平行四边形的面积。

(麻烦,有局限性)

2、探索平行四边形面积的计算公式。

(1)教师讲话:不数方格怎样能够计算平行四边形的面积呢?想一想,如果我们把平行四边形转化成我们过去学过的图形,就可以根据已学过的面积公式计算出它的面积了,转化成什么图形,怎样转化呢?请大家拿出手里的学具试试看。

(2)学生动手剪拼(可以小组合作),并向周围同学说一说是怎样转化的。

(3)同学到前面演示转化的方法。

(4)教师演示课件并组织学生讨论:

①平行四边形和转化后的长方形有什么关系?

②怎样计算平行四边形的面积?为什么?

③如果用S表示平行四边形的面积,用a表示平行四边形的底,用n表示平行四边形的高,那么平行四边形面积的字母公式是什么?

3、应用

例1一块平行四边形钢板,它的面积是多少?(得数保留整数)

(平方米)

答:它的面积约是17平方米。

三、质疑小结

今天你学到了哪些知识?怎样计算平行四边形面积?

四、巩固练习

1、列式并计算面积

①底厘米,高厘米,

②底米,高米,

③底分米,高分米

2、说出下面每个平行四边形的底和高,计算它们的面积。

3、应用题

有一块地近似平行四边形,底是43米,商是米,这块地的面积约是多少平方米?(得数保留整数)

4、量出你手里平行四边形学具的底和高,并计算出它的面积。

20 134571
");