高一数学教案必修一 高一数学教案【汇编5篇】

网友 分享 时间:

【写作参考】一篇好的范文往往能让您的写作事半功倍,下面是由阿拉题库网友为您分享的“高一数学教案必修一 高一数学教案【汇编5篇】”优质范例,供您写作参考之用,轻松写作,远离加班熬夜,希望以下内容对您有所帮助,喜欢就下载支持吧!

高一数学教案必修1【第一篇】

学生的年龄在15——17岁间,具有模仿力,容易冲动,表现欲较强,容易害羞等特点;中考的成绩大都在400——430间,数学基础水平较差。基础运算、空间想象、语言表达能力不佳;现已经接触过棱柱,棱锥,棱台;圆柱,圆锥、圆台等几何体;对这些几何体的形状不陌生;但不会画图,对直观图还不了解;将学生引入到如何绘出这些空间的几何体,符合学生的好奇心,能激发他们的求知欲;同时通过引导,激励使他们勤于动手,进而达到使其易学、乐学的目的。

1、知识目标:用斜二测画法画简单空间几何体的直观图。

2、能力目标:

(1)掌握斜二测画法的规则,会用它画简单空间几何体的直观图。

(2)能由空间几何体的直观图还原空间几何体。

3、情感目标:倡导学生动手实践,培养学生热爱学习的情感。

三、

画出空间几何体的直观图是学生学好立体几何的必要条件。今年的教材将直观图前置到三视图之前,使学生一开始就能注意对几何体的整体展示,为后面的学习打好基础;本节课主要是介绍了最常用的、直观性好的斜二测画法。而水平放置的平面图形的直观图画法,是画空间几何体直观图的基础。教学的重点是斜投影画平面图形直观图的方法,即斜二测画法。教材给出了正六边形、长方体、圆柱直观图画法很适合学生阅读。教学时可以适当举例,以突出画法步骤为主,达到提高学生绘图能力的目的。

根据本节课的内容及学生的实际水平,在教学中,创设问题情境,采用探索讨论法进行教学,学生主动参与提出问题、探索问题和解决问题的过程,突出以学生为主体的探究性学习活动。

1、复习提问:棱柱,直棱柱,正棱柱,棱锥,正棱锥的定义。

2、新课引入:什么是几何体的直观图?(投影打出)。

围绕几何体的直观图的概念让学生观察图片比较孰优孰劣:1.图片都是空间图形在平面上的反映,通过对图片的研究可以了解空间图形的一些性质和特征.2.中心投影虽然可以显示空间图形的直观形象,但作图较复杂,又不易度量.3.立体几何中常用平行投影(斜投影)来画空间图形的直观图,这种画法叫斜二测画法.(投影展示)。

3、投影规律(投影展示)。

4、斜二测画法的规则:(投影展示)。

板书:建系。

(2)平行不变。

(3)长度规则。

提示:(1)棱柱、棱锥的直观图都是线段构成。

(2)要画线段关键是画“点”

(3)直线的投影是直线。

要画直观图。最重要的是画出各个顶点。

5学生练习:用斜二测画法画下列图形的直观图:

(1)边长为2cm的正方形。

(2)边长为2cm的正三角形。

提问:如何建系可使画图最容易?

6、学生口述用斜二测画法画下列图形的直观图的步骤。

7、学会画平面图形后,怎样画几何体?

投影给出规则:(投影展示)。

8、要求学生在刚才的基础上用斜二测画法画下列图形的直观图:

(1)棱长为2cm的正方体。

(2)底边长为2cm,高为2cm的正三棱锥。

提示:平行于x轴和z轴的线段,在直观图中保持长度不变;

学生现练习,教师后演示。

9、用投影展示(1)的全过程。

11、学生再次回答斜二测画法画“底”的基本步骤和规则:

(1)建坐标系,定水平面;

(2)与坐标轴平行的线段保持平行;

(3)水平线段等长,竖直线段减半.

板书::“横同,竖半,45度”+“长高”

12、若是圆柱、圆锥如何处理?

提示:圆周由点构成——————投影展示圆的直观图画法。

说明:在实际画水平放置的圆的直观图时,通常使用椭圆模版。

用斜二测画法画下列图形:

(1)地边长为4cm,为3cm的正四棱锥;

(2)棱长为3cm的正方体;

(3)长、宽、高、分别为5cm、4cm、3cm的长方体.。

高一数学教案必修1【第二篇】

本课时主要研究任意角三角函数的定义。三角函数是一类重要的基本初等函数,是描述周期性现象的重要数学模型,本课时的内容具有承前启后的重要作用:承前是因为可以用函数的定义来抽象和规范三角函数的定义,同时也可以类比研究函数的模式和方法来研究三角函数;启后是指定义了三角函数之后,就可以进一步研究三角函数的性质及图象特征,并体会三角函数在解决具有周期性变化规律问题中的作用,从而更深入地领会数学在其它领域中的重要应用。

本堂课采用“问题解决”教学模式,在课堂上既充分发挥学生的主体作用,又体现了教师的引导作用。整堂课先通过问题引导学生梳理已有的知识结构,展开合理的'联想,提出整堂课要解决的中心问题:圆周运动等具周期性规律运动可以建立函数模型来刻画吗?从而引导学生带着问题阅读和钻研教材,引发认知冲突,再通过问题引导学生改造或重构已有的认知结构,并运用类比方法,形成“任意角三角函数的定义”这一新的概念,最后通过例题与练习,将任意角三角函数的定义,内化为学生新的认识结构,从而达成教学目标。

知识与技能目标:形成并掌握任意角三角函数的定义,并学会运用这一定义,解决相关问题。

过程与方法目标:体会数学建模思想、类比思想和化归思想在数学新概念形成中的重要作用。

情感态度与价值观目标:引导学生学会阅读数学教材,学会发现和欣赏数学的理性之美。

重点:任意角三角函数的定义。

难点:任意角三角函数这一概念的理解(函数模型的建立)、类比与化归思想的渗透。

学生已有的认知结构:函数的概念、平面直角坐标系的概念、任意角和弧度制的相关概念、以直角三角形为载体的锐角三角函数的概念。在教学过程中,需要先将学生的以直角三角形为载体的锐角三角函数的概念改造为以象限角为载体的锐角三角函数,并形成以角的终边与单位园的交点的坐标来表示的锐角三角函数的概念,再拓展到任意角的三角函数的定义,从而使学生形成新的认知结构。

“问题解决”教学法,是以问题为主线,引导和驱动学生的思维和学习活动,并通过问题,引导学生的质疑和讨论,充分展示学生的思维过程,最后在解决问题的过程中形成新的认知结构。这种教学模式能较好地体现课堂上老师的主导作用,也能充分发挥课堂上学生的主体作用。

本课时先通过“阅读”学习法,引导学生改造已有的认知结构,再通过类比学习法引导学生形成“任意角的三角函数的定义”,最后引导学生运用类比学习法,来研究三角函数一些基本性质和符号问题,从而使学生形成新的认识结构,达成教学目标。

高一数学教案必修1【第三篇】

1. 阅读课本 练习止.

2. 回答问题

(1)课本内容分成几个层次?每个层次的中心内容是什么?

(2)层次间的联系是什么?

(3)对数函数的定义是什么?

(4)对数函数与指数函数有什么关系?

3. 完成 练习

4. 小结.

二、方法指导

1. 在学习对数函数时,同学们应从熟悉的指数问题出发,通过对指数函数的认识逐步转化为对对数函数的认识,而且画对数函数图象时,既要考虑到对底数的分类讨论而且对每一类问题也可以多选几个不同的底,画在同一个坐标系内,便于观察图象的特征,找出共性,归纳性质.

一、提问题

1. 对数函数的自变量和函数分别在指数函数中是什么?

2.两个函数如果互为反函数,则他们的值域,定义域有什么关系?

3.是否所有的函数都有反函数?试举例说明.

二、变题目

1. 试求下列函数的反函数:

(1) ; (2) ;

(3) ; (4) .

2. 求下列函数的定义域:

(1) ; (2) ; (3) .

3. 已知 则 = ; 的定义域为 .

1.对数函数的'有关概念

(1)把函数 叫做对数函数, 叫做对数函数的底数;

(2)以10为底数的对数函数 为常用对数函数;

(3)以无理数 为底数的对数函数 为自然对数函数.

2. 反函数的概念

在指数函数 中, 是自变量, 是 的函数,其定义域是 ,值域是 ;在对数函数 中, 是自变量, 是 的函数,其定义域是 ,值域是 ,像这样的两个函数叫做互为反函数.

3. 与对数函数有关的定义域的求法:

4. 举例说明如何求反函数.

一、课外作业: 习题3-5 a组 1,2,3, b组1,

二、课外思考:

1. 求定义域: .

2. 求使函数 的函数值恒为负值的 的取值范围.

高一数学教案必修1【第四篇】

教学目标。

熟悉两角和与差的正、余公式的推导过程,提高逻辑推理能力。

掌握两角和与差的正、余弦公式,能用公式解决相关问题。

教学重难点。

熟练两角和与差的正、余弦公式的正用、逆用和变用技巧。

教学过程。

复习。

两角差的余弦公式。

用-b代替b看看有什么结果?

高一数学教案必修1【第五篇】

1、知识与技能:

(1)结合实例,了解正整数指数函数的概念.

(2)能够求出正整数指数函数的解析式,进一步研究其性质.

2、过程与方法:

(1)让学生借助实例,了解正整数指数函数,体会从具体到一般,从个别到整体的研究过程和研究方法.

(2)从图像上观察体会正整数指数函数的性质,为这一章的学习作好铺垫.

3、情感.态度与价值观:使学生通过学习正整数指数函数体会学习指数函数的重要意义,增强学习研究函数的积极性和自信心.

正整数指数函数的定义.教学难点:正整数指数函数的解析式的确定.

:学生观察、思考、探究.教学方法:探究交流,讲练结合。

(一)新课导入。

[互动过程1]:

(1)请你用列表表示1个细胞分裂次数分别。

为1,2,3,4,5,6,7,8时,得到的细胞个数;。

(2)请你用图像表示1个细胞分裂的次数n()与得到的细。

胞个数y之间的关系;。

(3)请你写出得到的细胞个数y与分裂次数n之间的关系式,试用。

科学计算器计算细胞分裂15次、20次得到的细胞个数.

解:。

(1)利用正整数指数幂的运算法则,可以算出1个细胞分裂1,2,3,。

4,5,6,7,8次后,得到的细胞个数。

分裂次数12345678。

细胞个数248163264128256。

(3)细胞个数与分裂次数之间的关系式为,用科学计算器算得,。

所以细胞分裂15次、20次得到的细胞个数分别为32768和1048576.

小结:从本题中可以看出我们得到的细胞分裂个数都是底数为2的指数,而且指数是变量,取值为正整数.细胞个数与分裂次数之间的关系式为.细胞个数随着分裂次数的增多而逐渐增多.

[互动过程2]:问题2.电冰箱使用的氟化物的释放破坏了大气上层的臭氧层,臭氧含量q近似满足关系式q=,其中q0是臭氧的初始量,t是时间(年),这里设q0=1.

(1)计算经过20,40,60,80,100年,臭氧含量q;。

(2)用图像表示每隔20年臭氧含量q的变化;。

(3)试分析随着时间的增加,臭氧含量q是增加还是减少.

(2)用图像表示每隔20年臭氧含量q的变化如图所。

示,它的图像是由一些孤立的点组成.

(3)通过计算和观察图形可以知道,随着时间的增加,。

臭氧含量q在逐渐减少.

探究:从本题中得到的函数来看,自变量和函数值分别。

又是什么?此函数是什么类型的函数?,臭氧含量q随着。

时间的增加发生怎样变化?你从哪里看出?

小结:从本题中可以看出我们得到的臭氧含量q都是底数为的指数,而且指数是变量,取值为正整数.臭氧含量q近似满足关系式q=,随着时间的增加,臭氧含量q在逐渐减少.

正整数指数函数的定义:一般地,函数叫作正整数指数函数,其中是自变量,定义域是正整数集.

说明:1.正整数指数函数的图像是一些孤立的点,这是因为函数的定义域是正整数集.2.在研究增长问题、复利问题、质量浓度问题中常见这类函数.

(二)、例题:某地现有森林面积为1000,每年增长5%,经过年,森林面积为.写出,间的函数关系式,并求出经过5年,森林的面积.

分析:要得到,间的函数关系式,可以先一年一年的增长变化,找出规律,再写出,间的函数关系式.

解:根据题意,经过一年,森林面积为1000(1+5%);经过两年,森林面积为1000(1+5%)2;经过三年,森林面积为1000(1+5%)3;所以与之间的函数关系式为,经过5年,森林的面积为1000(1+5%)5=(hm2).

练习:课本练习1,2。

解:一个月后他应取回的钱数为y=20xx(1+%),二个月后他应取回的钱数为y=20xx(1+%)2;,三个月后他应取回的钱数为y=20xx(1+%)3,,n个月后他应取回的钱数为y=20xx(1+%)n;所以n与y之间的关系为y=20xx(1+%)n(nn+),一年后他全部取回,他能取回的钱数为y=20xx(1+%)12.

(三)、小结:1.正整数指数函数的图像是一些孤立的点,这是因为函数的定义域是正整数集.2.在研究增长问题、复利问题、质量浓度问题中常见这类函数.

(四)、作业:课本习题3-11,2,3。

20 2796347
");