初三数学教案设计汇总8篇

网友 分享 时间:

【阅览】优质的范文能让您的写作方便快捷,远离加班,以下这篇“初三数学教案设计汇总8篇”是由阿拉题库网友整理分享的,供您参考之用,希望对您有些帮助,喜欢就复制下载吧。

《用数学》教案设计【第一篇】

1、理解并掌握用分数表示可能性大小的基本思考方法,会用分数表示简单事件发生的可能性,进一步加深对可能性大小的认识。

2、进一步体会数学知识间的内在联系,感受数学思考的严谨性与数学学习的趣味性。

3、认识数学与生活的联系,使学生明确生活中任何幸运和偶然的背后都是有科学规律支配的。

一、复习旧知,唤起经验。

(游戏)要求:一定发生的就立正,不发生的就坐着不动。

(1)太阳从东方升起。

(2)明天要上学。

(3)地球绕着太阳转。

(4)明天会下雨。

明天会不会下雨呢?都有可能,但可能性是多少呢?这节课我们就来研究可能性的大小。(板书课题)。

二、创设情境,引导发现。

举例:做游戏时用掷硬币的方法决定谁先开始,二个人每个人的可能性都是1/2。

1、教学例1。

同学在打乒乓球时是怎么决定谁先发球的?

提问:用猜左右的方法决定由谁先发球公平吗为什么。

学生讨论后明确:一共有2种情况,乒乓球可能在左手,也可能在右手,对于运动员来说,无论猜左还是猜右,猜对的可能性是一半,猜错的可能性也是一半.

可能性是一半用分数怎么表示你怎么想到是。

追问:2表示什么,1呢。

小结:乒乓球可能在左手,也可能在右手,所以猜的结果只有"对"或"错"两种可能,猜对与猜错的可能性相等,都是.用这种方法决定谁先发球是公平的。

2、同步体验。

拿出一个口袋。

(1)谈话:这里面原来有一些球,现在放入一个红球,从中任意摸出一个球,摸到红球的可能性是几分之几(学生肯定有疑问)。

(2)打开袋子(一红一蓝)问:有答案了吗你怎么想的。

(3)交流中明理:一共2个球,任意摸一个,有2种情况,摸到红球是1种情况,所以摸到红球的可能性是().

(4)再往袋中放入一个绿球,任意摸一个球,摸到红球的可能性是几分之几为什么。

(5)疑问:为什么摸到红球的可能性会不同呢这说明可能性的大小和什么有关。

(6)小结:一共有几个球,红球有一个,摸到红球的可能性是几分之一.

三、迁移和提升。

自学例2,并集体讲解。

“试一试”

“练一练”

四、实践与应用。

1、”非常6+1”,共有12只蛋,9只金蛋,如果你是第一个打进电话的人,你成为幸运星的可能性是多少?如果第一个人砸了一个蛋是金蛋,而你是第二个打进电话的人,你成为幸运星的可能性是多少?.

2、语文中的数学问题。

用分数表示可能性的大小:。

平分秋色、十拿九稳、天方夜谭、百发百中。

3、练习十八1-2。

四、全课总结,感受价值.

提问:今天我们学习了什么你有什么收获你觉得这些知识有什么用。

用数学(教案设计)(人教版教案设计)【第二篇】

义务教育课程标准实验教科书数学(人教版)一年级下册“两位数减一位数和整十数”教学内容及相应的练习。

教学目标。

1.初步理解并掌握“求一个数比另一个数少几”的数学问题的计算方法。

2.正确计算“求一个数比另一个数少几”的数学问题。

3.经历学具操作与讨论的过程,获得解决“求一个数比另一个数少几”的数学问题的思维方法,并增强应用数学的意识。

4.体验与同伴交流获得成功的喜悦,初步感受到生活中处处有数学。

设计思路。

本节课的“求一个数比另一个数少几”是在“求一个数比另一个数多几”的算理和解答方法的基础上学习的内容。基于对教材的理解,考虑到小学一年级学生的年龄特征和认知规律,做以下安排:

1.迁移类推,沟通新旧知识的联系。

数学知识是密切联系的,新知识往往是旧知识的延伸和拓展,在“谈话引入发现问题”时,充分发挥示意图的作用,以唤起学生对旧知识的回忆,有助于学生系统地掌握知识,为讲授新课做好准备。

2.充分发挥学生的主体作用,使每个学生尽可能地参与学习的全过程。

在课堂上突出直观教学和实际操作,设置学生操作、讨论、试说、试算等活动,引导学生自己揭示算理,将知识转化为能力,有利于学生良好认知结构的形成和学习能力的提高,并从中体会与同伴合作获得成功的愉悦。

3.提高学生的学习兴趣,激发学生的想像力。

“兴趣是最好的老师,想像力是创造的灵魂。”针对学生的年龄特征和心理特点,将多媒体引进课堂,提高了学生的学习兴趣,丰富了他们的想像力。例如,第4道练习题,教师只给出已知条件,让学生探求结果的可能性。一题多问,让学生从各种设想出发进行探究,不拘于一种形式,不限于一种途径,充分发挥学生的想像力,培养学生的创新意识。

教学流程。

一、谈话引入,发现问题。

1.创设情境。

电脑显示红花榜:

(学生们都很有兴趣,注意观察红花榜。)。

2.引导观察,发现问题。

师:看了这幅图,你想到了什么?学生观察,自由发言:

小雪多,小磊少。

小雪有12朵,小磊有8朵,小华有9朵……。

师:你根据这幅图能提出什么数学问题?

学生独立思考,提出问题:

小雪和小磊一共有多少朵?

小雪比小磊多几朵?

小雪比小华多几朵?

小磊比小雪少几朵?

……。

二、合作交流,解决问题。

1.自主探索,尝试解决。

师:同学们真聪明,提了这么多的问题,那么你会解答吗?你想说哪个就说哪个。

(学生根据自己的喜欢与难易情况来选择答题。教师随着学生的回答,板书算式并订正。)。

生a:12+8=20(朵)。

生b:12-8=4(朵)。

师:为什么用减法?

生:因为求小雪比小磊多几朵。

生c:12-9=3(朵)。

生d:12-8=4(朵)。

师:同学们,根据d的口答,你想对他提出些什么问题?

(学生思考后可能提出:

你为什么用减法?

我同意他的方法。

生d可能回答:因为求小磊比小雪少几朵,所以用减法……)。

2.合作学习,突破难点。

师:咦,老师从这些题里发现两个问题。

教师指着板书b和d,问:为什么“小雪比小磊多几朵”与“小磊比小雪少几朵”的算式,都是“12-8=4(朵)”?“小磊比小雪少几朵”用“12-8=4(朵)”来解答,是对还是错呢?你们愿意帮助老师来解答这两个问题吗?可以四人小组来讨论一下,还可以借助学具,通过摆红花来想一想。

教师巡视,给个别组适当提示。

学生分组进行讨论,并结合学具边摆边商量,推选一名代表在班内发言:

生a:“12-8=4(朵)”这个答案是对的。

生b:因为“小雪比小磊多几朵”与“小磊比小雪少几朵”意思一样,所以算法也一样,都用“12-8=4(朵)”。

……。

师:同学们真聪明,下面还有一些问题等着我们去解决,有没有信心?

三、巩固反馈。

1.教科书第73页“做一做”。

电脑示图:

学生读题后,独立思考,集体订正。

基本练习加以巩固新知。。

2.教科书第74页,练习十二第1题。

师:有两个小朋友在比赛跳跳绳,我们一起去看看他们各跳了多少下?电脑示图:

师:电脑博士给我们出了两道题。

(1)小清比小芳多跳了多少下?

(2)小芳比小清少跳了多少下?

师:你会解答吗?做在练习本上。

学生读题后,独立练习,集体订正。

对比练习,加深“一个数比另一个数多几”与“另一个数比这个数少几”的关系。。

3.选择题(教科书第74页第3题)。

电脑示图:

师:你能根据算式选择正确的问题吗?(加大难度)。

算式:44-40=4(盆)。

(学生独立思考后,选择答案,并集体订正。)。

问题:一共有多少盆?

月季比菊花少多少盆?

菊花比月季多多少盆?

还剩多少盆?

4.教科书第75页第5题。

电脑显示:

李平家养的家禽。

师:你能提出什么问题?

学生独立思考,自由发言:

鸭比鹅多几只?

鹅比鸭少几只?

鸡比鸭多几只?

鹅比鸡少几只?

……。

学生根据问题列算式:

30-20=10(只)。

30-20=10(只)。

45-30=15(只)。

45-20=25(只)。

……。

有利于培养学生分析问题、解决问题的能力及探索精神。。

用数学(教案设计)(人教版教案设计)【第三篇】

在三年级上册中,教材专门安排了一个单元让学生直观认识四边形,其中也初步认识了平行四边形,学生已经能够从具体的实物或图形中识别出平行四边形通过活动知道了平行四边形两组对变相等这一特征。而梯形是第一次出现。本节课的重点是引导学生通过观察、操作活动发现平行四边形和梯形的特征,从而抽象概括出它们各自的定义,分析四边形内在的关系。

我设计这节课的过程中,我力图体现以下理念:

一、关注知识形成的过程,关注学生的探究能力。

用发展的眼光来设计学习活动,让学生在探究中亲历知识形成的过程,远比让学生直接但却被动地获取现成知识结论要更加具有深远的意义和影响,学生的观察、猜想、探索和创新等其他各方面能力都能得到有效地开发和锻炼。“纸上得来终觉浅。”以听、记忆背诵接受而来的知识,理解较肤浅也易遗忘。而在体验中自身感悟的东西理解深刻、印象久远。创新能力、实践能力是不可能靠讲授、听而得来的,“能力”要在有效的活动中、探究中、应用中、实践中锻炼而成。

对平行四边形的特征研究,我本着让学生亲历知识的形成过程的方法,先让学生看课本上的主题图,对平行四边形的特征有一个初步的感知,然后让学生以四人小组为单位有序探究,自己量一量、比一比、想一想,从而得出平行四边形的特征。学生在汇报和补充的过程中,逐步把知识点完善起来,得到了有效地学习。

考虑到梯形的特征比较简单,而且把梯形与平行四边形放在一起探究比较重复累赘,就在判断中使学生产生矛盾,通过争论中得出梯形的特征和定义。

二、数学来源于生活、应用于生活。

新的课程标准更多地强调学生用数学的眼光从生活中捕捉数学问题,主动地运用数学知识分析生活现象,自主地解决生活中的实际问题。因此,在数学教学中应重视学生的生活体验,把数学教学与学生的生活体验相联系,把数学问题与生活情境相结合,让数学生活化,生活数学化。

课始,我选取了与学生生活最贴近的材料——校园,让学生在校园里找熟悉的四边形,让学生体会到数学的资源来源于生活。

课末,我让学生思考学习了平行四边形的用处,截取了一些实际生活中的视频图,让学生感受到数学与日常生活的紧密联系,许多生活中的现象都是可以用数学知识来解决的。

用数学(教案设计)(人教版教案设计)【第四篇】

由该课文的教学目标和学习重点导人新课。

二、简介有关文学常识。

1、乐府和乐府诗:概念略。举例:《上邪》《战城南》。

2、汉代乐府与南北朝乐府。

3、“乐府双璧”:汉乐府《孔雀东南飞》和北朝乐府《木兰辞》。

4、《孔雀东南飞》:是我国古代文学史上最早的一首长篇叙事诗,也是我国古代最优秀的民间叙事诗。选自南朝徐陵所编《玉台新咏》。

三、结合小序简介本文故事情节。

开头小序,交代了故事发生的时间、地点、人物以及成诗的经过。故事发生在汉代末年的建安年间,是以真人真事为基础创作的。

四、导读全诗,把握情节和人物。

课文较长,重点引读,理清情节线索,鉴赏人物对话。

故事梗概:

东汉建安年间,才貌双全的刘兰芝和庐江小吏焦仲卿真诚相爱。可婆婆焦母因种种原因对兰芝百般刁难,兰芝毅然请归,仲卿向母求情无效,夫妻只得话别,双双“誓天不相负”。

兰芝回到娘家,慕名求婚者接踵而来,先是县令替子求婚,后是太守谴丞为媒。兰芝因与仲卿有约,断然拒绝。然而其兄恶言相向,兰芝不得已应允太守家婚事。仲卿闻变赶来,夫妻约定“在天愿作比翼鸟,在地愿为连理枝”。兰芝出嫁的喜庆之日,刘焦二人双双命赴黄泉,成千古绝唱。

故事结尾与其它中国民间文学几成千篇1律,充满浪漫主义的理想色彩:两人合葬,林中化鸟。(其它如《梁祝》中的“化蝶”、牛郎织女的“七夕相会”)。

五、要求学生结合课文注解通读一遍。

解决下列问题:

1、基本解决翻译问题;。

2、理清故事脉络和矛盾冲突的变化和激化;。

3、注意人物对话的特点和人物形象的塑造。

六、教学后记。

第二课时。

一、结合课后练习一理清故事结构。

开头两句:托物起兴,引出故事。

第一部分:兰芝被遣(2~5自然段)――故事的开端。

第二部分:夫妻誓别(6~12自然段)――故事的发展。

第三部分:兰芝抗婚(13~21自然段)――故事的发展。

第四部分:双双殉情(22~31自然段)――故事的高潮。

第五部分:告诫后人(32自然段)――故事的尾声。

本诗以时间为顺序,以刘兰芝、焦仲卿的爱情和封建家长制的迫害为矛盾冲突的线索,也可以说按刘兰芝和焦仲卿的别离、抗婚、殉情的悲剧发展线索来叙述,揭露了封建礼教破坏青年男女幸福生活的罪恶,歌颂了刘兰芝、焦仲卿的忠贞爱情和反抗精神。

二、人物形象和对话。

本文成功地塑造了刘兰芝、焦仲卿的艺术形象,除了他们的悲剧行为外,对话在表现典型性格方面起了决定性的作用。

1、刘兰芝:坚强、持重,不为威逼所屈,也不为荣华所动。

“十三能……十六诵诗书”――知书达礼。

“受母钱帛多,不堪母驱使”――不卑不亢。

“处分适兄意,那得任自专”――外柔内刚。

2、焦仲卿:忠于爱情,忍辱负重,但胆小怕事。

“今若遣此妇,终老不复取”――坚贞不逾。

“故作不良计,勿复怨鬼神”――叛逆精神。

3、焦母:反面形象,是封建家长制的代言人,是封建礼教摧残青年的典型;她既极端的蛮横无理,又一味的独断专行。对焦刘的婚姻强行拆散,对儿子软硬兼施。(对话鉴赏略)。

4、刘兄:反面形象,是封建家长制和封建礼教摧残青年的帮凶。此人性行暴戾,趋炎附势,尖酸刻薄,冷酷无情。(对话鉴赏略)。

三、文章的表现手法。

1、人物对话的个性化;(见二)。

2、铺陈排比的手法;。

3、起兴和尾声。

四、本文出现的“偏义复词”

便可白公姥:意义偏“姥”

昼夜勤作息:意义偏“作”

我有亲父母:意义偏“母”

逼迫兼兄弟:意义偏“兄”

五、本文出现的古今异义词。

共事二三年:共同生活(一起工作)。

可怜体无比:可爱(值得同情)。

汝岂得自由:自作主张(没有约束)。

本自无教训:教养(失败的经验)。

处分适兄意:处理(处罚)。

便可作婚姻:结为亲家(结为夫妻)。

叶叶相交通:交接(与运输有关的)。

六、归纳“谢”“相”“见”“迎”的一词多义。

参见有关资料与练习。

七、作业布置:

1、背诵课文精彩语段;。

2、课后练习二三题;。

3、《知识与能力训练》。

八、教学后记。

《用数学》教案设计【第五篇】

教学目标:

1、使学生理解除数是一位数,商是整十、整百数的口算方法,学会正确、熟练地进行计算。

2、引导学生将掌握的口算乘法知识迁移到口算除法中去,培养学生迁移类推的能力。

3、培养学生的语言表达能力。

教学重点:

能正确进行口算。

教学难点:

掌握口算除法的思维方法,理解算理。

教具准备:

口算卡片、小棒。

教学过程:

一、学前准备。

1、口算。

教师出示口算卡片,学生抢答。

2、口答。

60里面有几个十?800里面有几个百?240里面有几个十?

3、把6根小棒平均分成3份,每份是多少根?

二、探究新知。

1、学习教材第11页例1。

(1)教师:我们来帮助小朋友解决问题吧。

教师板书:60÷3。

(2)尝试解答60÷3。

(3)交流、汇报计算方法。

(4)动手操作。

请同学们拿出6捆小棒,分一分。

(5)说说谁的.方法最简单,你喜欢用哪种方法进行口算。

(6)同桌交流60÷3的口算过程。

教师指导,帮助学习有困难的学生。

2、学习600÷3=。

(1)板书:600÷3=。

师:这道题应怎样想呢?

(2)尝试口算600÷3=。

(3)提问:谁能说出600÷3的口算方法。

3、学习教材第12页例2。

板书:120÷3。

(2)观察被除数与刚才所学例题中的被除数有什么不同。

(3)引导学生独立口算。

(4)说一说思考的过程。

三、课堂作业新设计。

1、教材第11页“做一做“。

(1)集体看“做一做“。

(2)观察每组中上下两题的异同。

(3)找出其中的运算规律。

(4)独立完成。

(5)验证其运算规律是否正确。(当被除数扩大到原来的10倍,除数不变时,商也扩大到原来的10倍)。

2、教材第13页练习三的第1―3题。

(1)独立完成。

(2)边做边口述口算过程。

四、思维训练。

1、列式并写出得数。

(1)6000除以3的多少?

(2)3600除以4的多少?

2、抢答。(口算卡)。

小学数学教案设计【第六篇】

教材第2页例1。

教学目标。

知识与技能:在学生已有的分数加法及分数基本意义的基础上,结合生活实例,通过对分数连加算式的研究,使学生理解分数乘整数的意义,掌握分数乘整数的计算方法,能够应用分数乘整数的计算法则,比较熟练地进行计算。

过程与方法:通过观察比较,指导学生通过体验,归纳分数乘整数的计算法则,培养学生的抽象概括能力。

情感、态度与价值观:引导学生探求知识的内在联系,激发学生学习兴趣。通过演示,使学生初步感悟算理,并在这过程中感悟到数学知识的魅力,领略到美。

重点难点。

重点:理解分数乘整数的意义,掌握分数乘整数的计算方法。

难点:总结分数乘整数的计算法则。

导学过程。

情景导入。

(一)探索分数乘整数的意义。

1.教学例1(课件出示情景图)。

师:想一想,你还能找出不一样的方法验证你的计算结果吗?

2.小组交流,汇报结果。

3.比较分析。

师:我们先来比较第(1)和第(2)两种方法,请分别说说你是怎么想的?预设:

预设:乘法是求几个相同加数的和的简便计算,只是这里的相同加数是一个分数。

引导说出:分数乘整数的意义与整数乘法的意义相同。(板书)。

师:我们再来比较第(2)和第(3)两种方法,这样算可以吗?为什么?

师:再来看这里的第(4)种方法,你能理解它表示的意思吗?结合图形把你的想法跟同桌进行交流。

4.归纳小结。

通过刚才的学习,我们知道了这三个算式解决的是同一个问题。并且知道了分数乘整数的意义与整数乘法的意义相同。接下来我们再看看它们的计算方法有什么联系和区别。

(二)分数乘整数的计算方法。

1.不同方法呈现和比较。

师:刚才的第(4)种方法用语言描述得出计算结果的过程,结合自己的解题方法回顾一下,的计算过程用式子该如何表示?预设:生1:按照加法计算=(个)。生2:(个)。师:比较一这两种方法计算结果相同吗?它们的相同点在哪里?(分母都是9)不同之处又是什么?(根据学生回答分别打上方框)这里的2+2+2和2×3都是在求什么?预设:有多少个。

2.归纳算法。

师:你觉得哪一种方法更简单?那么这种方法是怎样计算的呢?

引导说出:用分子与整数相乘的积作分子,分母不变。(板书)。

3.先约分再计算的教学。

师:刚才我看到有一位同学是这样计算的。与这里的第二种算法又有什么不同呢?

师:比较一下,你认为哪一种方法更简单?为什么?

小结:“先约分再计算”的方法,使参与计算的数字比原来小,便于计算。但是要注意格式,约得的数与原数上下对齐。

二、巩固练习,强化新知。

1.例1“做一做”第1题。

师:说出你的思考过程。

2.例1“做一做”第2题。

师:在计算时要注意什么?(强化算法,突出能约分的要先约分,再计算。)。

用数学(教案设计)(人教版教案设计)【第七篇】

教学目的`:

通过学习,培养学生分析能力和解决问题的能力。

教学重难点:

初步培养学生提出问题、思考问题、解决问题的能力。

教学过程设计:

一、复习。

1、口算:

3+74+95+67+812+6。

2、计算:

二、新授。

1、教学例4。

出示挂图。

问:你看到了什么?请你仔细看看,你发现了什么问题?

师指出:对评比牌前面的灌树挡住了,你有办法知道每个班红旗获得情况吗?

2、小组讨论。

教师要注意引导学生观看条件。

3、小组汇报。

如:二(2)班16-3=13。

注意:强调让学生通过多种方法进行计算。

4、问:谁知道二(1)班、二(2)班得几面红旗呢?

小组讨论,师生共同总结出:没办法知道。因为被树挡住了。

问:那他们可能得几面红旗呢?

你是在怎么知道的?

三、练习。

1、p23做一做。

2、练习四第1—4题。

教学反思:

《用数学》教案设计【第八篇】

教学目标:

1.在具体情境中认识列与行,理解数对的含义,能用数对表示具体情境中的位置。

2.使学生经历由具体的实物图到方格图的抽象过程,提高学生的抽象思维能力,渗透坐标思想,发展空间观念。

3.使学生体验数学与生活的密切联系,拓宽知识视野,体会数学的价值,进一步增强用数学的眼光观察生活的意识,提高学习数学的兴趣。

重点难点:

理解数对的含义,能用数对表示位置。

课前准备:

课件。

教学过程:

一、谈话导入。

生:从右向左数第4排的第2个。

师:谁还想说?

生:从左向右数第2排的第3个。

师:还有不同的说法吗?

生:从后往前数,第4排的第3个。

师:怎么同一个人的位置有这么多种说法呢?

生1:人们是从不同的角度和不同的方位观察的。

生2:人们的视觉不同,也就是观察的角度不同,说的方法就不一样了。

生:有点乱。

师:我们能不能寻找一种既简单又准确的方法来描述位置呢,这节课我们就一起来探讨如何确定位置。(板书:确定位置)。

20 2893223
");