《确定起跑线》(4篇)

网友 分享 时间:

【导言】此例“《确定起跑线》(4篇)”的教案资料由阿拉题库网友为您分享整理,以供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载支持吧!

《确定起跑线》课堂实录1

邹艳 执教 (湖北省襄樊市大庆路小学)

祝才慧 评析 (湖北省襄樊市教研室)

朱贵刚 评析 (湖北省襄樊市城区教研室)

教学内容:人教版《义务教育课程标准实验教科书·数学》六年级上册第75-76页。

教学目标:

1.通过该活动让学生了解田径场跑道的结构,学会确定起跑线的方法。

2.通过活动培养学生利用小组合作探究解决问题的能力。

3.通过活动让学生切实体会到探索的乐趣,感受到数学在体育等领域的广泛应用。

教学过程:

课前谈话:

同学们,前不久我们襄樊市承办了湖北省第十二届运动会,我市的体育健儿们努力拼搏取得了优异的成绩。你们都看到比赛了吗?(学生回答)老师也看了一些比赛,不过老师和同学们一样要上课,还有许多精彩比赛都错过了。今天,我要先带大家去观摩一场小型的运动会。 [评析:课的开始通过师生对话,谈谈同学们身边发生的大事,合理利用课前的几分钟,就犹如奏响了课堂教学主题曲的前奏。既吸引学生学习的注意力,也可拉近师生之间的心理距离,激发学生的学习热情,创设宽松的课堂氛围,让学生在心理安全的状态下进入学习活动。]

一、创设情景。提出问题

1.情景导入:小动物的运动会。

(多媒体播放)四只小兔子从同一条起跑线起跑,分四个道次沿椭圆形跑道跑一圈。再回到同一个终点,谁先回到终点就为第一。

师:同学们对这场比赛有什么看法吗?你有什么办法可以使比赛公平呢?

[评析:数学课程标准中指出数学要紧密联系学生的生活实际,从学生的经验和已有知识出发,创设良好的教学环境。运动会是学生生活中很熟悉的活动,它贴进学生的生活实际,真实、自然。课的开始在这样一个学生熟悉的活动中设计了一场不公平的比赛,让学生在观看的同时也发现了比赛中存在的问题,并且提出问题。学生还结合自己的生活经验发表了解决问题的方法,比如。学生提出将起跑线向前移动的方法,激发了学生探究问题的欲望。]

2.赛事回放:欣赏运动场上运动员起跑时的图片。

教师同步讲解:同学们的想法与我们体育比赛中的想法一样,进行400米的比赛。如果从同一条起跑线起跑,外道比内道长,相邻跑道之间有差距,为了公平的原则,会将起跑线依次向前移。

3.提出问题:体育比赛中,相邻两道起跑线都提前一定的距离,这个距离是随便移动的吗?相邻起跑线相差多少米?你能看出来吗?

4.揭示课题:今天,我们就带着这个问题走进运动场,用我们的知识找出相邻起跑线相差多少米?重新确定一个公平的起跑线。

(板书课题:确定起跑线)

[评析:几幅运动场上的图片搭起了现实生活与数学课堂之间的桥梁,充分的体现了数学是来源于生活,利用学生的发现提出问题:起跑线提前的距离是多少?使学生感受到生活中也隐藏着数学问题,数学就在我们的身边。]

二、观察跑道。探究问题

(一)了解跑道结构:出示完整跑道图(共四道,跑道最内圈为400米)

1.观察跑道由哪几部分组成?

2.在跑道上跑一圈的长度可以看成是哪几部分的和?

(板书:跑道一圈长度=圆周长+2个直道长度)

[评析:把生活中的跑道缩小放在屏幕上,既直观又形象,也便于学生观察。并且直道和弯道用不同的颜色更好的引导学生发现跑道中的秘密:左右两个弯道舍起来其实是个圆。]

(二)简化研究问颞。

米是指哪部分的长度?一条直道吗?

2.讨论:四个小兔子沿跑道跑一圈,各跑道之间的差距会在跑道的哪一部分呢?

3.小结:既然与直道无关,为了便于我们更好的观察,暂时将直道拿走看看差距在那里,好吗?(课件:直道消失,屏幕上只剩下左右两个弯道。)

[评析:学生在观察中发现相邻跑道的差距没有在直道部分,有学生想到会在弯道部分。在这里教师做了一个大胆的创新;既然与直道无关。就把直道拿走,屏幕上只留下了左右两个弯道。给学生留下了无限的思考空间。]

(三)寻求解决方法:

1.左右两个半圆形的弯道合起来是一个什么?

2.讨论:你怎样找出相邻弯道的差距?相邻弯道差距其实就是谁的长度之差?

3.交流小结:只要计算出各圆的周长,算出相邻两圆相差多少米。就是相邻跑道的差距,也就是相邻起跑线相差多少米。

[评析:课程标准中指出,教师要积极利用各种教学资源,创造性地使用教材,设计符合学生发展的教学过程,培养学生的创新意识。在这里学生发现左右的半圆是一个圆,课件将左右的弯道合成一个圆,鼓励学生大胆设想,通过小组的合作、交流,倾听别人的意见和想法,激发自己的灵感,让每一个学生对问题发表自己的见解,呵护他们的创新思维,从而找出问题的结果:弯道之差其实就是圆的周长之差。]

(四)动手解决问题:

1.计算圆的周长要知道什么?(直径)

2.课件出示:第一道的直径为米,第二道是多少?第三道呢?

3.教师带领学生填写表格的前两道。剩下的由学生完成。

跑道

直径(米)

周长(米)

相邻跑道相差长度(米)

1

,n

2

+

f72 6+2 5)w

+2 5)w一ⅱ=2 5ⅱ

3

4

4.汇报结论:相邻起跑线相差都是盯,也就是道宽×2x'it。说明起跑线的确定与道宽最有关系。

5.计算相邻起跑线相差的具体长度:~----×=米。

师:同学们通过努力找到了起跑线的秘密,小动物们的比赛应该把起跑线依次提前米才公平。

[评析:学生在教师的组织、引导下开展小组合作学习。通过填写表格,找出确定起跑线的规律:即400米起跑线差距是∏,为了便于学生发现规律及后面的计算,均用代数式来表示,减轻了学生的计算负担,同时也提升了学生的数学思维品质。学生在探究活动中不仅加强了对所学知识的理解,同时获得了运用数学解决问题的思考方法,学会了与他人合作,学生的数学素养得到提高。]

三、巩固练习,实践应用

师:小动物们很感谢同学们的帮助。可是它们在比赛时调整了道宽,你能帮它们再计算一下吗?

400米的跑步比赛,道宽为米,起跑线该依次提前多少米?

生:×2×∏=3×=(米)

四、拓展延伸。自我评价

1.解决问题:在运动场上还有200米的比赛,道宽为米,起跑线又该依次提前多少米?

预设生1:道宽与前面的400米一样,我可以用前面算的米除以2.是米。

预设生2:200米的比赛就只跑了400米的一半,跑了一个弯道。只增加了一个道宽,就可以直接用道宽×∏。

2.比较方法:同学们想的很巧妙,谁的更实用呢?

3.全课小结:谈一谈,这节课你有什么收获?

[评析:数学的学习要应用于生活,但是不要死搬硬套。生活中的问题很多,学生通过对400米跑道起跑线的确定,让他们能灵活的运用知识解决其他类似的问题,小小的拓展练习打开了学生思维的空间,开发出学生的无限智慧,使学生的知识变得鲜活起来。]

[总评: 本节课教师在教学设计中,巧妙地创设问题情境,独辟探讨蹊径,放手让学生探究,在过程中感知新知,体验情感,并注意渗透数学思想方法。纵观本课具有以下特点:

1.在活动中学习。

本节课是以活动贯穿整节课,教师力求在各种活动中帮助每个学生都能有所获。并得到充分的发展。课的开始小动物运动会,这样一个学生熟悉的活动中设计了一场不公平的比赛,让学生在观看的同时也发现了比赛中存在的问题,并且提出问题。学生还结合自己的生活经验发表了解决问题的方法,比如:学生提出将起跑线向前移动的方法,等等。在研究跑道时让学生观察发现与直道无关,就把直道拿走,只留下了左右两个弯道,再将左右的弯道合成一个圆,从而找出问题的结果:弯道之差其实就是圆的周长之差。这样的设计层次清楚、鲜明,有效地突破了本节课的重点、难点。

2.在探索中发现。

本节课中,教师密切关注了学生思维的发展点,留给学生广阔的思维空间。每一问题提出,教师都会要求学生先独立思考,让每个学生都经历思考问题的过程,再听取别人的意见,进行小组交流、讨论,并在这种思维的碰撞中达到升华。通过填写表格,找出确定起跑线的规律:即400米起跑线差距是∏,为了便于学生发现规律及后面的计算,均用代数式来表示,减轻了学生的计算负担。在教师的引导下,学生积极地投身于数学活动中,亲身经历知识的形成过程,并逐渐掌握了探索的技巧和方法,真正体现数学的思想和智慧。

3.在延伸中升华。

当学生知道每相邻两起跑线相差2∏之后,教师引导学生从小动物们在比赛时调整了道宽,起跑践该依次提前多少米入手,然后再解决在运动场上还有200米的比赛,道宽为米,起跑线又该依次提前多少米?这一问题是对所学知识的综合应用,学生的情绪特别高涨,充分参与其中,自然并自觉地运用所学的知识去寻求解决问题的思路和方法。在这种活跃的气氛中,学生对知识的理解达到了一个新的高度,做到学以致用,使学生感受当面对一些现实问题时,如何去分析,并做出正确的判断和选择:理解数学知识来源于生活,并最终要应用于生活,感受到数学知识的应用价值。]

三人行,必有我师焉。以上这4篇《确定起跑线》是来自于山草香的确定起跑线的相关范文,希望能有给予您一定的启发。

《确定起跑线》2

教学目标:

1、通过数学活动让学生了解田径赛道的结构,学会确定塞到起跑线的方法。

2、结合具体实际问题,通过观察、比较、分析、归纳等数学活动,让学生通过独立思考与合作交流等活动提高解决实际问题的能力。

3、在主动参与数学活动的过程中,让学生切实体会到探索的乐趣,感受到数学知识在生活中的广泛应用。

教学重点:通过对赛道周长的计算,了解田径场跑道的结构,能根据所学知识解决确定起跑线的问题。

教学难点:综合运用圆的知识解答生活中遇到的实际问题,探究起跑线位置的设置与什么有关。

教学过程:

一、视频导入:

出示关于100米和400米比赛的视频,学生认真观察,想想两种比赛规则上有什么相同和不同。

(设计意图:吸引学生的注意力,能将100米和400米比赛直观的展现在学生面前,便于学生观察和了解。联系生活,增加学生学习数学的兴趣。)

相同:都在各自的跑道上。

不同:100米为直道,400米为弯道,且400米赛道运动员的起跑线不同。

师:为什么100米站在同一起跑线上,而400米却不同?(可追加问题:如果你是一名运动员,在400米跑中你会选择哪条赛道?)

(出示图片“赛道”)

生:在外圈的吃亏,外圈比内圈长。

生:内圈的起跑线向前移动一些,终点不变,这样比赛就公平了。

(给学生足够的思考和回答时间)

师:同学的思维非常的敏锐,而且超出了老师的想想。那么外圈的起跑线究竟要向前移动多少,比赛才相对的公平呢?

(设计意图:适当的表扬和鼓励,激发学生继续探究的兴趣,为下面学习新知奠定基础。)

师:所以为了解决比赛公平的问题,我们共同研究如何“确定起跑线”,板书课题。

二、进入新课。

1、分析赛道

师讲解跑道结构:400米标准运动场一般有8条赛道,最里面的为第一道,依次为第二道,第三道……,每条赛道有内外两条线组成,每条跑道的长度指这条赛道中内测线的长度。那么(课件出示以下三个问题)

(1)400米运动场指的是那条赛道的长度?

(2)每条赛道由几部分组成?

(3)如何计算每条跑道的长度?

(设计意图:第二、三问题直接点出本课的教学重点,且难度适中,在学生思考和讨论的过程中很容易得出合理的结论,以此来增强学生学习的兴趣。)

小组讨论

小组内和同学交流你的观点,看看谁的观点更准确,方法更简便。

学生汇报小组讨论结果

生:400米运动场指的是第一条赛道的长度。

生:由4部分组成,其中有两条直道和两条弯道,两条弯道可以组成以一个圆。

生:跑道一圈的长度=2条直道的长度+一个圆的周长

2、收集数据

师:利用刚才讨论的结果,计算各赛道的长度,并把所得的数据填到信息采集表中。

(设计意图:学生用自己认为可行的办法来解决实际问题,锻炼学生的实践能力,将理论和实际结合,不空乏的纸上谈兵。)

3、分析数据

师:如何计算相邻两跑道的长度差?

生:分别把每条跑道的程度计算出来,也就是计算两个直道长度与一个圆周长的总和,在相减,就可以知道相邻两条跑道的差。

师:谁还有更简便的计算方法么?

生:因为跑道的长度与直道无关,只要计算出各圆的周长,算出相邻两圆的周长相差多少米,就是相邻跑道的差。

师:如果我们在计算圆的周长时直接用π来表示,看我们有什么发现?

(+×2)π-π=π-π+×2×π

×2×π

……

4、形成结论

(相邻跑道起跑线相差都是“跑道宽×2×π”)

师:(结论)同学们经过努力终于找到了确定起跑线的秘密!只要知道跑道的宽度,就能确定起跑线的位置。

三、知识拓展:

200米、800米、1500米比赛的起跑线该如何确定?

五、小结,这节课你有什么收获?

生:为了使比赛公平,外圈跑道的起跑线要向前移动。

生:向前移动的距离是两个相邻跑道的差。

生:两个相邻跑道的长度差,只与跑道的宽度有关。

生:我知道400米跑相邻跑道的差的计算方法是

相邻赛道差=赛道宽×2×π

四、板书设计:

每条赛道的长度=两个直道的长度+圆的周长

400米跑相邻赛道的差=跑道宽×2×π

确定起跑线3

综合应用“确定起跑线”是在学生掌握了圆的概念和周长等知识的基础上设计的。通过该活动一方面让学生了解椭圆形田径场跑道的结构,学会确定跑道起跑线的方法;另一方面让学生切实体会到数学在体育等领域的广泛应用。

“确定起跑线”活动由以下四个部分组成。

1.提出研究的问题。

教材呈现了400m椭圆形跑道的一部分,跑道上有一些同学站在起跑线上正准备起跑,教材开门见山地提出问题,引起学生对起跑线位置的关注和思考。

经过小组同学共同讨论,达成共识:“终点相同,但每条跑道的长度不同,如果在同一条起跑线上,外圈的同学跑的距离长,所以外圈跑道的起跑线位置应该往前移”。

在此认知基础上,教材紧接着引申出进一步研究的问题“各条跑道的起跑线应该相差多少米”,即如何确定每条跑道的起跑线。

2.收集数据。

教材第75页第二幅图中呈现了小组同学测量有关数据的场景,旨在帮助学生了解400m跑道的结构以及各部分的数据。

由于不同田径场的规格可能有所不同,而且进行实地测量需要花费较多的时间,同时测量还可能会产生误差,因而实际教学时不必要求学生实际测量。只要通过该图让学生明确相关的数据是通过测量获得的即可,具体的数据则可以配合图片、投影片等相应形式给出。老师还可就半圆形跑道的直径在此是如何规定的,以及跑道线的宽在这里忽略不计等问题向学生作一具体说明。

3.整理数据,确定思路。

学生对已获得的数据进行整理,通过适宜的方式呈现数据,使学生明确:(1)每圈跑道的长度等于两个半圆形跑道合成的圆的周长加上两个直道的长度。(2)两个半圆形跑道合在一起就是一个圆。(3)各条跑道直道长度相同。要确定跑道的起跑线,只要算出每相邻两条跑道的长度差就可以了。

4.进行计算,得出结论。

在学生明确解决问题的思路和方法后,教材在第四幅图中给出了一张表格,通过让学生分别计算各条跑道的半圆形跑道的直径、两个半圆形跑道的周长以及跑道的全长,从而计算出相邻跑道长度之差,确定每条跑道的起跑线。在此,可以向学生说明:理论上相邻跑道之间的长度差是相同的π,由于π的取值造成了有的相邻跑道之间的差是,有的是,。在确定起跑线时,可以根据计算结果来确定。

最后,为了巩固对该类问题的认识,请学生进一步确定200m赛跑中跑道起跑线的位置。

《确定起跑线》4

教学内容:

人教版课程标准实验教材六年级上册第75—76页。

教学目标:

1、通过该活动让学生了解椭圆式田径场跑道的结构,学会确定起跑线的方法。

2、通过活动培养学生利用小组合作,探究解决问题的能力。

3、通过活动让学生切实体会到探索的乐趣,感受到数学在体育等领域的广泛应用。

教学过程:

一、课前谈话:(3分钟)

同学们,前不久我们银川市承办了小学生运动会,我校的体育健儿们努力拼搏取得了优异的成绩。你们都看到比赛了吗?(学生回答)老师也看了一些比赛,不过老师和同学们一样要上课,还有许多精彩比赛都错过了。今天,我要先带大家去观摩一场小型的运动会。

[设计意图:课的开始通过师生对话,谈谈同学们身边发生的大事,合理利用课前的几分钟,就犹如奏响了课堂教学主题曲的前奏。既吸引学生学习的注意力,也可拉近师生之间的心理距离,激发学生的学习热情,创设宽松的课堂氛围,让学生在心理安全的状态下进入学习活动。]

二、创设情景,提出问题(5分钟)

1、情景导入:小动物的运动会。

(多媒体播放)四只小兔子从同一条起跑线起跑,分四个道次沿椭圆形跑道跑一圈,再回到同一个终点,谁先回到终点就为第一。

师:同学们对这场比赛有什么看法吗?你有什么办法可以使比赛公平呢?

[设计意图:数学课程标准中指出数学要紧密联系学生的生活环境,从学生的经验和已有知识出发,创设良好的教学环境。运动会是学生生活中很熟悉的活动,它贴进学生的生活实际,真实、自然。课的开始在这样一个学生熟悉的活动中设计了一场不公平的比赛,让学生在观看的同时也发现了比赛中存在的问题,并且提出问题。学生还结合自己的生活经验发表了解决问题的方法,比如:学生提出将起跑线向前移动的方法,等等。激发了学生探究问题的欲望。]

2、赛事回放:欣赏运动场上运动员起跑时的图片。

教师同步讲解:同学们的想法与我们体育比赛中的想法一样,进行400米的比赛,如果从同一条起跑线起跑,外道比内道长,相邻跑道之间有差距,为了公平的原则,会将起跑线依次向前移。

3、提出问题:体育比赛中,相邻两道起跑线都提前一定的距离,这个距离是随便移动的吗?相邻起跑线相差多少米?你能看出来吗?

4、揭示课题:今天,我们就带着这个问题走进运动场,用我们的知识找出相邻起跑线相差多少米?重新确定一个公平的起跑线。

(板书课题:确定起跑线)

[设计意图:几幅运动场上的图片搭起了现实生活与数学课堂之间的桥梁,充分的体现了数学是来源于生活,利用学生的发现提出问题:起跑线提前的距离是多少?使学生感受到生活中也隐藏着数学问题,数学就在我们的身边。]

三、观察跑道、探究问题(24分钟)

(一)了解跑道结构:出示完整跑道图(共四道,跑道最内圈为400米)

1、观察跑道由哪几部分组成?

2、在跑道上跑一圈的长度可以看成是哪几部分的和?

(板书:跑道一圈长度=圆周长+2个直道长度)

[设计意图:把生活中的跑道缩小放在屏幕上,既直观又形象,也便于学生观察。并且直道和弯道用不同的颜色更好的引导学生发现跑道中的秘密:左右两个弯道合起来其实是个圆。]

(二)简化研究问题:

1、米是指哪部分的长度?一条直道吗?

2、讨论:四个小兔子沿跑道跑一圈,各跑道之间的差距会在跑道的哪一部分呢?

3、小结:既然与直道无关,为了便于我们更好的观察,暂时将直道拿走看看差距在那里,好吗?(课件:直道消失,屏幕上只剩下左右两个弯道。)

[设计意图:学生在观察中发现相邻跑道的差距没有在直道部分,有学生想到会在弯道部分。在这里教师做了一个大胆的创新:既然与直道无关,就把直道拿走,屏幕上只留下了左右两个弯道。给学生留下了无限的思考空间。]

(三)寻求解决方法:

1、左右两个半圆形的弯道合起来是一个什么?

2、讨论:你怎样找出相邻弯道的差距?相邻弯道差距其实就是谁的长度之差?

3、交流小结:只要计算出各圆的周长,算出相邻两圆相差多少米,就是相邻跑道的差距,也就是相邻起跑线相差多少米。

[设计意图:新课程标准中指出,教师要积极利用各种教学资源,创造性地使用教材,设计符合学生发展的教学过程,培养学生的创新意识。在这里学生发现左右的半圆是一个圆,课件将左右的弯道合成一个圆,鼓励学生大胆设想,通过小组的合作、交流,倾听别人的意见和想法,激发自己的灵感,让每一个学生对问题发表自己的见解,呵护他们的创新思维,从而找出问题的结果:弯道之差其实就是圆的周长之差。]

(四)、动手解决问题:

1、计算圆的周长要知道什么?(直径)

2、课件出示:第一道的直径为米,第二道是多少?第三道呢?

3、教师带领学生填写表格的前两道,剩下的由学生完成。

跑道直径(米)周长(米)相邻跑道相差长度(米)

20 1057292
");