实用高一下册数学教案【通用5篇】
【导言】此例“实用高一下册数学教案【通用5篇】”的教案资料由阿拉题库网友为您分享整理,以供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载支持吧!
高一数学下册教案【第一篇】
一、学习目标
知识与技能:了解柱体,锥体,台体,球体的几何特征,会画三视图、直观图,能求表面积、体积。
过程与方法:通过旋转体的形成,掌握利用轴截面化空间问题为平面问题处理的方法。会画图、识图、用图。
情感态度与价值观:培养动手能力,空间想象能力,由欣赏图形的美到去发现美,创造美。
二、学习重、难点
学习重点:各空间几何体的特征,计算公式,空间图形的画法。
学习难点:空间想象能力的建立,空间图形的识别与应用。
三、使用说明及学法指导:结合空间几何体的定义,观察空间几何体的图形培养空间想象能力,熟记公式,灵活运用。
四、知识链接1.回忆柱体、锥体、台体、球体的几何特征。2.熟记表面积及体积的公式。
五、学习过程
题型一:基本概念问题
A例1:(1)下列说法不正确的是( )
A:圆柱的侧面展开图是一个矩形 B:圆锥的轴截面是一个等腰三角形 C: 直角三角形绕着它的一边旋转一周形成的曲面围成的几何体是圆锥 D:圆台平行于底面的截面是圆面
(2)下列说法正确的是( )A:棱柱的底面一定是平行四边形 B:棱锥的底面一定是三角形C: 棱锥被平面分成的两部分不可能都是棱锥D:棱柱被平面分成的两部分可以都是棱柱
题型二:三视图与直观图的问题
B例2:有一个几何体的三视图如下图所示,这个几何体应是一个( )
A 棱台 B 棱锥 C 棱柱 D 都不对
B例3:一个三角形在其直观图中对应一个边长为1正三角形,原三角形的面积为 ( )
A. B. C. D.
题型三:有关表面积、体积的运算问题
B例4:已知各顶点都在一个球面上的正四柱高为4,体积为16,则这个球的表面积是 ( )
A B C 24 D 32
C例5:若正方体的棱长为 ,则以该正方体各个面的中心为顶点的凸多面体的体积 ( )
(A) (B) (C) (D)
题型四:有关组合体问题
例6:已知某个几何体的三视图如下,根据图中标出的尺寸(单位:cm),可得这个几何体的体积是( )
A. B. C. D.
六、达标训练
1、若一个几何体的三视图都是等腰三角形,则这个几何体可能是 ( )
A.圆锥 B.正四棱锥 C.正三棱锥 D.正三棱台
2、一个梯形采用斜二测画法作出其直观图,则其直观图的面积是原来梯形面积的( )
A. 倍 B. 倍 C. 倍 D. 倍
3、将一圆形纸片沿半径剪开为两个扇形,其圆心角之比为3∶4. 再将它们卷成两个圆锥侧
面,则两圆锥体积之比为 ( )
∶4 ∶16 ∶64 D.都不对
4、利用斜二测画法得到的
①三角形的直观图一定是三角形; ②正方形的直观图一定是菱形;
③等腰梯形的直观图可以是平行四边形; ④菱形的直观图一定是菱形。
以上结论正确的是 ( )
A.①② B. ① C.③④ D. ①②③④
5、有一个几何体的三视图如下图所示,这个几何体应是一个( )
A 棱台 B 棱锥 C 棱柱 D 都不对
6、如果一个几何体的三视图如图所示,主视图与左视图是边长为2的`正三角形、俯视图轮廓为正方形,(单位长度:cm),则此几何体的侧面积是( )
A. cm B. cm2
C. 12 cm D. 14 cm2
7、若圆锥的表面积为 平方米,且它的侧面展开图是一个半圆,则这个圆锥的底面的直径为
8、将圆心角为 ,面积为 的扇形,作为圆锥的侧面,求圆锥的表面积和体积
9、 如图,在四边形 中, , , , , ,求四边形 绕 旋转一周所成几何体的表面积及体积
10、(如图)在底半径为2母线长为4的 圆锥中内接一个高为 的圆柱,求圆柱的表面积
七、小结与反思
至理名言没有学不会的知识,只有不会学的学生。
总结20xx年已经到来,新的一年数学网会为您整理更多更好的文章,希望本文高一数学第一单元下册教案:空间几何体教案能给您带来帮助!
高一数学下册教案【第二篇】
课型:新授课
教学目标:理解并掌握两条直线平行与垂直的条件,会运用条件判定两直线是否平行或垂直。
教学重点:两条直线平行和垂直的条件是重点,要求学生能熟练掌握,并灵活运用.
教学难点:启发学生,把研究两条直线的平行或垂直问题,转化为研究两条直线的斜率的关系问题.
注意:对于两条直线中有一条直线斜率不存在的情况,在课堂上老师应提醒学生注意解决好这个问题.
教学过程:
(一)先研究特殊情况下的两条直线平行与垂直
上一节课,我们已经学习了直线的倾斜角和斜率的概念,而且知道,可以用倾斜角和斜率来表示直线相对于x轴的倾斜程度,并推导出了斜率的坐标计算公式。现在,我们来研究能否通过两条直线的斜率来判断两条直线的平行或垂直.
讨论:两条直线中有一条直线没有斜率,(1)当另一条直线的斜率也不存在时,两直线的倾斜角都为90°,它们互相平行;(2)当另一条直线的斜率为0时,一条直线的倾斜角为90°,另一条直线的倾斜角为0°,两直线互相垂直.
(二)两条直线的斜率都存在时,两直线的平行与垂直
设直线L1和L2的斜率分别为k1和k2.我们知道,两条直线的平行或垂直是由两条直线的方向决定的,而两条直线的方向又是由直线的倾斜角或斜率决定的所以我们下面要研究的问题是:两条互相平行或垂直的直线,它们的斜率有什么关系?
首先研究两条直线互相平行(不重合)的情形.如果L1∥L2(图1-29),那么它们的倾斜角相等:α1=α2.(借助计算机,让学生通过度量,感知α1,α2的关系)
∴tgα1=tgα2.
即k1=k2.
反过来,如果两条直线的斜率相等:即k1=k2,那么tgα1=tgα2.
由于0°≤α1<180°,0°≤α<180°,
∴α1=α2.
又∵两条直线不重合,
∴L1∥L2.
结论:两条直线都有斜率而且不重合,如果它们平行,那么它们的斜率相等;反之,如果它们的斜率相等,那么它们平行,即
注意:上面的等价是在两条直线不重合且斜率存在的前提下才成立的,缺少这个前提,结论并不成立.即如果k1=k2,那么一定有L1∥L2;反之则不一定。
下面我们研究两条直线垂直的情形.
如果L1⊥L2,这时α1≠α2,否则两直线平行.
设α2<α1(图1-30),甲图的特征是L1与L2的交点在x轴上方;乙图的特征是L1与L2的交点在x轴下方;丙图的特征是L1与L2的交点在x轴上,无论哪种情况下都有
α1=90°+α2.
因为L1、L2的斜率分别是k1、k2,即α1≠90°,所以α2≠0°.
,
可以推出:α1=90°+α2. L1⊥L2.
结论:两条直线都有斜率,如果它们互相垂直,那么它们的斜率互为负倒数;反之,如果它们的斜率互为负倒数,那么它们互相垂直,即
注意:结论成立的条件。即如果k1·k2=-1,那么一定有L1⊥L2;反之则不一定。
例题分析:
例1已知A(2,3),B(-4,0),P(-3,1),Q(-1,2),试判断直线BA与PQ的位置关系,并证明你的结论。
解:直线BA的斜率k1=(3-0)/(2-(-4))=,
直线PQ的斜率k2=(2-1)/(-1-(-3))=,
因为k1=k2=,所以直线BA∥PQ.
例2.已知四边形ABCD的四个顶点分别为A(0,0),B(2,-1),C(4,2),D(2,3),试判断四边形ABCD的形状,并给出证明。
例3.已知A(-6,0),B(3,6),P(0,3),Q(-2,6),试判断直线AB与PQ的位置关系。
解:直线AB的斜率k1=(6-0)/(3-(-6))=2/3,
直线PQ的斜率k2=(6-3)(-2-0)=-3/2,
因为k1·k2=-1所以AB⊥PQ.
例4.已知A(5,-1),B(1,1),C(2,3),试判断三角形ABC的形状。
分析:借助计算机作图,通过观察猜想:三角形ABC是直角三角形,其中AB⊥BC,再通过计算加以验证。(图略)
课堂练习
P89练习
归纳小结:
(1)两条直线平行或垂直的真实等价条件;
(2)应用条件,判定两条直线平行或垂直。
(3)应用直线平行的条件,判定三点共线。
作业布置:P89-90习题:A组;
课后记:
高一下册数学教案【第三篇】
教学目标:
1、结合实际问题情景,理解分层抽样的必要性和重要性;
2、学会用分层抽样的方法从总体中抽取样本;
3、并对简单随机抽样、系统抽样及分层抽样方法进行比较,揭示其相互关系。
教学重点:
通过实例理解分层抽样的方法。
教学难点:
分层抽样的步骤。
教学过程:
一、问题情境
1、复习简单随机抽样、系统抽样的概念、特征以及适用范围。
2、实例:某校高一、高二和高三年级分别有学生名,为了了解全校学生的视力情况,从中抽取容量为的样本,怎样抽取较为合理?
二、学生活动
能否用简单随机抽样或系统抽样进行抽样,为什么?
指出由于不同年级的学生视力状况有一定的差异,用简单随机抽样或系统抽样进行抽样不能准确反映客观实际,在抽样时不仅要使每个个体被抽到的机会相等,还要注意总体中个体的层次性。
由于样本的容量与总体的个体数的比为100∶2500=1∶25,
所以在各年级抽取的个体数依次是。即40,32,28。
三、建构数学
1、分层抽样:当已知总体由差异明显的几部分组成时,为了使样本更客观地反映总体的情况,常将总体按不同的特点分成层次比较分明的几部分,然后按各部分在总体中所占的比进行抽样,这种抽样叫做分层抽样,其中所分成的各部分叫“层”。
说明:
①分层抽样时,由于各部分抽取的个体数与这一部分个体数的比等于样本容量与总体的个体数的比,每一个个体被抽到的可能性都是相等的;
②由于分层抽样充分利用了我们所掌握的信息,使样本具有较好的代表性,而且在各层抽样时可以根据具体情况采取不同的抽样方法,所以分层抽样在实践中有着非常广泛的应用。
高一数学下册教案【第四篇】
各位评委、各位专家,大家好!今天,我说课的内容是人民教育出版社全日制普通高级中学教科书(必修)《数学》第一章第五节“一元二次不等式解法”。
下面从教材分析、教学目标分析、教学重难点分析、教法与学法、课堂设计、效果评价六方面进行说课。
一、教材分析
(一)教材的地位和作用
“一元二次不等式解法”既是初中一元一次不等式解法在知识上的延伸和发展,又是本章集合知识的运用与巩固,也为下一章函数的定义域和值域教学作铺垫,起着链条的作用。同时,这部分内容较好地反映了方程、不等式、函数知识的内在联系和相互转化,蕴含着归纳、转化、数形结合等丰富的数学思想方法,能较好地培养学生的观察能力、概括能力、探究能力及创新意识。
(二)教学内容
本节内容分2课时学习。本课时通过二次函数的图象探索一元二次不等式的解集。通过复习“三个一次”的关系,即一次函数与一元一次方程、一元一次不等式的关系;以旧带新寻找“三个二次”的关系,即二次函数与一元二次方程、一元二次不等式的关系;采用“画、看、说、用”的思维模式,得出一元二次不等式的解集,品味数学中的和谐美,体验成功的乐趣。
二、教学目标分析
根据教学大纲的要求、本节教材的特点和高一学生的认知规律,本节课的教学目标确定为:
知识目标——理解“三个二次”的关系;掌握看图象找解集的方法,熟悉一元二次不等式的解法。
能力目标——通过看图象找解集,培养学生“从形到数”的转化能力,“从具体到抽象”、“从特殊到一般”的归纳概括能力。
情感目标——创设问题情景,激发学生观察、分析、探求的学习激情、强化学生参与意识及主体作用。
三、重难点分析
一元二次不等式是高中数学中最基本的不等式之一,是解决许多数学问题的重要工具。本节课的重点确定为:一元二次不等式的解法。
要把握这个重点。关键在于理解并掌握利用二次函数的图象确定一元二次不等式解集的方法——图象法,其本质就是要能利用数形结合的思想方法认识方程的解,不等式的解集与函数图象上对应点的横坐标的内在联系。由于初中没有专门研究过这类问题,高一学生比较陌生,要真正掌握有一定的难度。因此,本节课的难点确定为:“三个二次”的关系。要突破这个难点,让学生归纳“三个一次”的关系作铺垫。
四、教法与学法分析
(一)学法指导
教学矛盾的主要方面是学生的学。学是中心,会学是目的。因此在教学中要不断指导学生学会学习。本节课主要是教给学生“动手画、动眼看、动脑想、动口说、善提炼、勤钻研”的研讨式学习方法,这样做增加了学生自主参与,合作交流的机会,教给了学生获取知识的途径、思考问题的方法,使学生真正成了教学的主体;只有这样做,才能使学生“学”有新“思”,“思”有新“得”,“练”有新“获”,学生也才会逐步感受到数学的美,会产生一种成功感,从而提高学生学习数学的兴趣;也只有这样做,课堂教学才富有时代特色,才能适应素质教育下培养“创新型”人才的需要。
(二)教法分析
本节课设计的指导思想是:现代认知心理学——建构主义学习理论。
建构主义学习理论认为:应把学习看成是学生主动的建构活动,学生应与一定的知识背景即情景相联系,在实际情景下进行学习,可以使学生利用已有知识与经验同化和索引出当前要学习的新知识,这样获取的知识,不但便于保持,而且易于迁移到陌生的问题情景中。
本节课采用“诱思引探教学法”。把问题作为出发点,指导学生“画、看、说、用”。较好地探求一元二次不等式的解法。
高一数学下册教案【第五篇】
教学要求:理解任意大小的角正角、负角和零角,掌握终边相同的角、象限角、区间角、终边在坐标轴上的角。
教学重点:理解概念,掌握终边相同角的表示法。
教学难点:理解角的任意大小。
教学过程:
一、复习准备:
1.提问:初中所学的角是如何定义?角的范围?
(角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形;0~360)
2.讨论:实际生活中是否有些角度超出初中所学的范围? 说明研究推广角概念的必要性
(钟表;体操,如转体720自行车车轮;螺丝扳手)
二、讲授新课:
1.教学角的概念:
① 定义正角、负角、零角:按逆时针方向旋转所形成的角叫正角,按顺时针方向旋转所形成的角叫负角,未作任何旋转所形成的角叫零角。
② 讨论:推广后角的大小情况怎样? (包括任意大小的正角、负角和零角)
③ 示意几个旋转例子,写出角的度数。
④ 如何将角放入坐标系中?定义第几象限的角。
(概念:角的顶点与原点重合,角的始边与 轴的非负半轴重合。 那么,角的终边(除端点外)在第几象限,我们就说这个角是第几象限角。 )
⑤ 练习:试在坐标系中表示300、390、—330角,并判别在第几象限?
⑥ 讨论:角的终边在坐标轴上,属于哪一个象限?
结论:如果角的终边在坐标轴上,就认为这个角不属于任何一个象限,称为非象限角。
答:锐角是第几象限角?第一象限角一定是锐角吗?再分别就直角、钝角来回答这两个问题。
⑦ 讨论:与60终边相同的角有哪些?都可以用什么代数式表示?
与终边相同的角如何表示?
⑧ 结论:与角终边相同的角,都可用式子k360+表示,kZ,写成集合呢?
⑨ 讨论:给定顶点、终边、始边的角有多少个?
注意:终边相同的角不一定相等;但相等的角,终边一定相同;终边相同的角有无数多个,它们相差360的整数倍
2.教学例题:
① 出示例1:在0~360间,找出下列终边相同角:—150、1040、—940。
(讨论计算方法:除以360求正余数 试练订正)
② 出示例2:写出与下列终边相同的角的集合,并写出—720~360间角。
(讨论计算方法:直接写,分析k的取值 试练订正)
③ 讨论:上面如何求k的值? (解不等式法)
④ 练习:写出终边在x轴上的角的集合,y轴上呢?坐标轴上呢?第一象限呢?
⑤ 出示例3:写出终边直线在y=x上的角的集合S, 并把S中适合不等式
的元素 写出来。 (师生共练小结)
3.小结:角的推广;象限角的定义;终边相同角的表示;终边落在坐标轴时等;区间角表示。
三、巩固练习:
1. 写出终边在第一象限的角的集合
2.作业:书P6 练习
第二课时:
弧度制(一)
教学要求:掌握弧度制的定义,学会弧度制与角度制互化,并进而建立角的集合与实数集R一一对应关系的概念。
教学重点:掌握换算。
教学难点:理解弧度意义。
教学过程:
一、复习准备:
1. 写出终边在x轴上角的集合。
2.写出终边在y轴上角的集合。
3.写出终边在第三象限角的集合。
4.写出终边在第一、三象限角的集合。
5.什么叫1的角?计算扇形弧长的公式是怎样的。
二、讲授新课:
1.教学弧度的意义:
① 如图:AOB所对弧长分别为L、L,半径分别为r、r,求证。
② 讨论: 是否为定值?其值与什么有关系?
③ 讨论: 在什么情况下为值为1? 是否可以作为角的度量?
④ 定义:长度等于半径长的弧所对的圆心角叫1弧度的角。 用rad表示,读作弧度。
⑤ 计算弧度:180、360 思考:—360等于多少弧度?
⑥ 探究:完成书P7 表1。1—1后,讨论:半径为r的圆心角所对弧长为l,则弧度数=?
⑦ 规定:正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0。 半径为r的圆心角所对弧长为l,则弧度数的绝对值为1 。 用弧度作单位来度量角的制度叫弧度制。
⑧ 讨论:由弧度数的定义可以得到计算弧长的公式怎样?
⑨ 讨论:1度等于多少弧度?1弧度等于多少度?度表示与弧度表示有啥不同?
—720的圆心角、弧长、弧度如何看?
2 .教学例题:
①出示例1:角度与弧度互化:
分析:如何依据换算公式?(抓住:180=p rad) 如何设计算法?
计算器操作: 模式选择 MODE MODE 1(2);输入数据;功能键SHIFT DRG 1(2)
② 练习:角度与弧度互化:03045120135150
③ 讨论:引入弧度制的意义?(在角的集合与实数的集合之间建立一种一一对应的关系)
④ 练习:用弧度制表示下列角的集合:终边在x轴上;终边在y轴上。
小结:弧度数定义;换算公式(180=p rad);弧度制与角度制互化。
三、巩固练习:
1.教材P10 练习1、2题。
2.用弧度制表示下列角的集合:终边在直线y=x; 终边在第二象限; 终边在第一象限。
3. 作业:教材P11 5、7、8题。
第三课时:
弧度制(二)
教学要求:更进一步理解弧度的意义,能熟练地进行弧度与角度的换算。 掌握弧长公式,能用弧度表示终边相同的角、象限角和终边在坐标轴上的角。 掌握并运用弧度制表示的弧长公式、扇形面积公式
教学重点:掌握扇形弧长公式、面积公式。
教学难点:理解弧度制表示。
教学过程:
一、复习准备:
1. 提问:什么叫1弧度的角?1度等于多少弧度?1弧度等于多少度?扇形弧长公式?
2.弧度与角度互换
3.口答下列特殊角的弧度数:0、30、45、60、90、120、135
二、讲授新课:
1.教学例题:
① 出示例:用弧度制推导:S = LR
分析:先求1弧度扇形的面积( R )再求弧长为L、半径为R的扇形面积?
方法二:根据扇形弧长公式、面积公式,结合换算公式转换。
② 练习:扇形半径为45,圆心角为120,用弧度制求弧长、面积。
③ 出示例:计算sin、tan15、cos
2.练习:
① 用弧度制写出与下列终边相同的角,并求0~2间的角。
② 用弧度制表示终边在x轴上角的集合、终边在y轴上角的集合?终边在第三象限角的集合?
③ 讨论:=k360+ 与=2k是否正确?
④ 与— 的终边相同,且—22
⑤ 已知扇形AOB的周长是6cm,该扇形的中心角是1弧度,求该扇形的面积。
解法:设扇形的半径为r,弧长为l,列方程组而求。
3. 小结:扇形弧长公式、面积公式;弧度制的运用;计算器使用。
三、巩固练习:
1.时间经过2小时30分,时针和分针各转了多少弧度?
2.一扇形的中心角是54,它的半径为20cm,求扇形的周长和面积。
3.已知角和角的差为10,角和角的和是10弧度,则、的弧度数分别是多少。
4.作业:教材P10 练习4、5、6题。
上一篇:《雨港基隆》汇总4篇
下一篇:春节前安全教育教案精编5篇