正多边形和圆人教版数学九年级教案【实用8篇】

网友 分享 时间:

【请您参阅】下面供您参考的“正多边形和圆人教版数学九年级教案【实用8篇】”是由阿拉网友精心整理分享的,供您阅读参考之用,希望此例范文对您有所帮助,喜欢就复制下载支持一下小编了!

正多边形和圆人教版数学九年级教案【第一篇】

乒乓球的标准直径为40mm,质检部门从a、b两厂生产的乒乓球中各抽取了10只,对这些乒乓球的直径了进行检测。结果如下(单位:mm):

b厂:,,,,,,,,,

你认为哪厂生产的乒乓球的直径与标准的误差更小呢?

(1)请你算一算它们的平均数和极差。

(2)是否由此就断定两厂生产的乒乓球直径同样标准?

今天我们一起来探索这个问题。

探索活动。

算一算。

把所有差相加,把所有差取绝对值相加,把这些差的平方相加。

想一想。

你认为哪种方法更能明显反映数据的波动情况?

正多边形和圆人教版数学九年级教案【第二篇】

本学期是初中学习的关键时期,进入初三,学生成绩差距较大。教学任务非常艰巨。因此,要完成教学任务,必须紧扣教学大纲,结合教学内容和学生实际,把握好重点、难点。努力把今学期的任务圆满完成。本着为了学生的一切为宗旨,把培养高素质人才作为目标,特制定本计划。

1.掌握二次函数的概念,五种基本函数关系式,会建立数学模型来解决实际问题。

2.学会用逻辑推理的思想来证明等腰三角形,平行四边形,矩形,菱形,正方形等几何图形的性质定理。

3.加强学生对数学知识的认识方法,培养他们正确的学习方法。

4.通过关於图形和证明的教学,进一步培学生的逻辑思维能力.与空间观念。

二.本学期在提高教学质量上采取的措施。

1.改进教学方法,采用启发式教学。

2.注意教科书的系统性,使学生牢固掌握旧知识的基础上,学习新知识,明确新旧知识的联系。

3.注意发展学生探索知识的能力,提高学生分析问题的能力。

4.开放性问题、探究性问题教学,培养学生创新意识、探究能力。

5.鼓励合作学习,加强个别辅导,提高差生成绩。

正多边形和圆人教版数学九年级教案【第三篇】

1、通过复习,加强统计观念的培养。

2、使学生能对数据进行简单分析,根据分析结果作出简单的判断与预测。

3、进一步理解平均数的意义,会求简单数据的平均数。

4、进一步体会小数的含义,掌握小数的读写法,并能进行简单的小数加、减法运算。

正多边形和圆人教版数学九年级教案【第四篇】

从甲地到乙地有两条公路:一条是全长600km的普通公路,另一条是全长480km的高速公路。某客车在高速公路上行驶的平均速度比在普通公路上快45km/h,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半。求该客车由高速公路从甲地到乙地所需的时间。

这一问题中有哪些等量关系?

如果设客车由高速公路从甲地到乙地所需的时间为h,那么它由普通公路从甲地到乙地所需的时间为_________h。

根据题意,可得方程______________________。

学生分组探讨、交流,列出方程.

正多边形和圆人教版数学九年级教案【第五篇】

本章是在小学了解了随机现象发生的可能性基础上,进一步学习事件的概率。生活中概率大量存在,与我们的生产生活密切相关。本节主要是了解随机事件和有关概念,教科书中设置了三个问题,通过问题1抽签试验和问题2掷骰子试验,主要让学生感受到,在一定条件下重复进行试验时,有些事件是必然发生,有些事件是不可能发生的,有些事件是有可能发生也有可能不发生的,在这两个具体问题探讨的基础上,提出随机事件等有关概念,要求学生能够在具体的情境中判断一个事情是随机事件还是确定性事件。问题3是一个摸球试验,主要探讨随机试验发生的可能性,以及随机事件发生可能性相对大小的定性描述,并要求通过试验验证判断。通过问题3,让学生了解随机事件发生的可能性有大有小,不同的随机事件发生的可能性大小很可能不同,并能够判断几个事件发生的可能性的相对大小。通过这三个问题,为下一节概率的学习做好铺垫。

二、教学目标。

1、理解必然发生的事件、不可能发生的事件、随机事件的概念。

2、了解随机事件发生的可能性有大有小,不同的随机事件发生的可能性的大小不同。

3、学生经历体验、操作、观察、归纳、总结的过程,发展学生从纷繁复杂的表象中,提炼出本质特征并加以抽象概括的能力。

4、感受数学与现实生活的联系,积极参与对数学问题的探讨,认识动手操作试验是验证得出结论的好方法。

5、能根据随机事件的特点,辨别哪些事件是随机事件.引领学生感受随机事件就在身边,增强学生珍惜机会,把握机会的意识。

三、教学重点与难点。

重点:掌握随机事件的特点,会判断现实生活中的随机事件。

难点:判断现实生活中哪些事件是随机事件.

四、教学方法。

动手试验交流归纳。

五、教学媒体工具。

多媒体、乒乓球、扑克牌、骰子。

六、教学过程。

(活动一)情境导入。

1、观看图片回答问题(见ppt)。

2、摸球游戏:

三个不透明的袋子中分别装有10个白色的乒乓球、5个白色的乒乓球和5个黄色的乒乓球、10个黄色的乒乓球.(小组内挑选3名同学来参加)。

游戏规则:每人每次从自己选择的袋子中摸出一球,记录下颜色,放回.然后搅匀,重复前面的试验.每人摸球5次.按照摸出黄色球的次数排序.次数最多的为第一名.其次为第二名、第三名.

教师活动:引导试验。

学生活动:积极参与并归纳。

设计意图:学生积极参加游戏,通过操作、观察、归纳,猜测出在第1个袋子中摸出黄色球是不可能的;在第2个袋子中能否摸出黄色球是不确定的;在第3个袋子中摸出黄色球是必然的。

通过生动、活泼的游戏,自然而然地引出必然发生的事件、随机事件和不可能发生的事件.这样不仅能够激发学生的学习兴趣,并且有利于学生理解.能够巧妙地实现从实践认识到理性认识的过渡。

(活动二)自主探究(问题1)。

问题1五名同学参加演讲比赛,以抽签方式决定每个人的出场顺序.为了抽签,我们准备了五张背面看上去相同的纸牌,上面分别标有出场顺序的数字1,2,3,4,5.把牌充分洗匀后,小军先抽,他在看不到纸牌上数字的情况下从中任意(随机)抽取一张纸牌.请思考以下问题:

(1)抽到的数字有几种可能的结果?

(2)抽到的数字小于6吗?

(3)抽到的数字会是0吗?

(4)抽到的数字会是1吗?

通过简单的推理或试验,可以发现:

(2)抽到的数字一定小于6;。

(3)抽到的数字绝对不会是0;。

(4)抽到的数字可能是1,也可能不是1,事先无法确定.

在一定条件下,有些事件必然会发生.例如,(1)“抽到的数字小于6”,这样的事件称为必然事件.

相反地,有些事件必然不会发生.例如,(2)“抽到的数字是0”.这样的事件称为不可能事件.

必然事件与不可能事件统称确定性事件.

在一定条件下,有些事件有可能发生,也有可能不发生,事先无法确定.例如,(4)“抽到的数字是1”,这个事件是否发生事先不能确定.在一定条件下,可能发生也可能不发生的事件,称为随机事件.

教师活动:引导学生自我试验。

学生活动:积极操作、试验、思考、分析,初步感知事件发生的情况类别。

设计意图:通过学生操作、结合实践经验,初步感知事件的发生从结果上看有三种情况。

正多边形和圆人教版数学九年级教案【第六篇】

1、金属+酸=盐+氢气置换反应条件:金属与酸氢以前,常用盐酸稀硫酸。

例如:锌加稀硫酸,氢气往上窜。

2、金属+盐=新金属+新盐置换反应条件:金属与盐盐可溶,一定范围前换后。

例如:铁语硫酸铜溶液的置换反应。

3、酸+金属氧化物=盐+水复分解反应条件:金属与酸氢以前,常用盐酸稀硫酸。

例如:盐酸除铁锈4酸+碱=盐+水复分解反应条件:酸碱反应必中和,成盐生水反应先。

例如:硝酸和氢氧化铜5酸+盐=新酸+新盐复分解反应条件:酸盐反应先看盐。碳酸盐遇酸就出气,否则盐溶生沉淀。

例如:硝酸和碳酸银6碱+非金属氧化物=盐+水复分解反应条件:金氧与碱遇到酸,成盐生水无条件。

例如:二氧化硫和硝酸钡7碱+盐=新碱+新盐复分解反应条件:碱盐反应盐可溶,生成物中有沉淀。

正多边形和圆人教版数学九年级教案【第七篇】

一、选择题(本大题共9小题,共分)。

1.下列四组图形中,一定相似的图形是。

a.各有一个角是的两个等腰三角形。

b.有两边之比都等于2:3的两个三角形。

c.各有一个角是的两个等腰三角形。

d.各有一个角是直角的两个三角形。

2.下列说法正确的是。

a.矩形都是相似图形。

b.各角对应相等的两个五边形相似。

c.等边三角形都是相似三角形。

d.各边对应成比例的两个六边形相似。

正多边形和圆人教版数学九年级教案【第八篇】

1.知道通过大量重复试验,可以用频率估计概率.

2.会根据问题的特点,用统计来估计事件发生的概率,培养分析问题,解决问题的能力.

3.让学生经历硬币实验和投图钉实验,对数据进行收集、整理、描述和分析,通过“猜想试验——收集数据——分析结果”的探索过程,体验频率的随机性与规律性,丰富对随机现象的体验,了解用频率估计概率的合理性和必要性,培养随机观念.

4.通过对问题的分析,理解用频率来估计概率的方法,渗透转化和估算的思想方法.

5.在合作探究学习过程中,激发学生学习的好奇心与求知欲,体验数学的价值与学习的乐趣.通过概率意义教学,渗透辩证思想教育.

教学重点。

对实验数据进行收集、整理、描述和分析.通过对事件发生的频率的分析来估计事件发生的概率.

教学难点。

2.对大量重复试验得到频率的稳定值的分析.

课时安排。

2课时.

第1课时。

教学内容。

1.知道通过大量重复试验,可以用频率估计概率.

2.让学生经历硬币实验和投图钉实验,对数据进行收集、整理、描述和分析,通过“猜想试验——收集数据——分析结果”的探索过程,体验频率的随机性与规律性,丰富对随机现象的体验,了解用频率估计概率的合理性和必要性,培养随机观念.

3.在合作探究学习过程中,激发学生学习的好奇心与求知欲,体验数学的价值与学习的乐趣.通过概率意义教学,渗透辩证思想教育.

教学重点。

对实验数据进行收集、整理、描述和分析.

教学难点。

教学过程。

一、导入新课。

问题:周末市体育场有一场精彩的篮球比赛,老师手中只有一张球票,小强与小明都是班里的篮球迷,两人都想去,我很为难,真不知该把球给谁,请大家帮我想个办法来决定把球票给谁.

生:抓阄、抽签、猜拳、投硬币,……。

教师对同学的较好想法予以肯定.(学生肯定有许多较好的想法,在众多方法中推举出大家较认可的方法.如抓阄、投硬币)。

追问,为什么要用抓阄、投硬币的方法呢?

学生讨论:这样做公平,能保证小强与小明得到球票的可能性一样大.

20 3334167
");